Error Analysis and Adaptive Localization for Ensemble Methods in Data Assimilation

África Periáñez, Hendrik Reich, Roland Potthast

DWD, Germany

Offenbach, March 6, 2013

Table of contents

Introduction

Challenge Introduction Ensemble Kalman Filter

Error Analysis on Ensemble Methods

Error analysis with and without background error Localization

Numerical results

Introduction Results Localization

Challenge

- Understand the basic properties of localization in the ensemble Kalman filter scheme.
- Define an adaptive localization depending on the density of data, observation and background error.
- Decomposition of the error sources to determine its effect on the optimal localization length scale.
- Perspective of approximation theory and functional analysis.
- Addressed with numerical experimental results.

Introduction

In order to find out φ we should minimize the functional

$$J(\varphi) := \left\|\varphi - \varphi^{(b)}\right\|^2 + \left\|f - H\varphi^{(b)}\right\|^2.$$

The normal equations are obtained from first order optimality conditions

$$abla_{arphi}J=0.$$

Usually, the relation between variables at different points is incorporated by using covariances/weighted norms:

$$J(\varphi) := \|\varphi - \varphi^{(b)}\|_{B^{-1}}^2 + \|f - H\varphi\|_{R^{-1}}^2,$$

The update formula is now

$$\varphi^{(a)} = \varphi^{(b)} + BH^*(R + HBH^*)^{-1}(f - H\varphi^{(b)})$$

4 of 23

Ensemble Kalman Filter

- In the KF method *B* evolves with the model dynamics: $B_{k+1} = MB_k M^*$.
- EnKF¹ is a Monte Carlo approximation to the KF.
- EnKF methods use reduced rank estimation techniques to aproximate the classical filters.
- The ensemble matrix $Q_k := \left(\varphi_k^{(1)} \overline{\varphi}_k^{(b)}, ..., \varphi_k^{(L)} \overline{\varphi}_k^{(b)}\right).$
- In the EnKF methods the background convariance matrix is represented by B := ¹/_{L−1}Q_kQ^{*}_k.
- Update solved in a low-dimensional subspace

$$U^{(L)} := \operatorname{span}\{\varphi_k^{(1)} - \overline{\varphi}_k^{(b)}, ..., \varphi_k^{(L)} - \overline{\varphi}_k^{(b)}\}.$$

 The updates of the EnKF are a linear combination of the columns of Q_k.

$$\varphi_k - \varphi_k^{(b)} = \sum_{l=1}^L \gamma_l \left(\varphi_k^{(l)} - \overline{\varphi}_k^{(b)} \right) = Q_k \gamma$$

$$arphi_k^{(a)} = arphi_k^{(b)} + \mathcal{Q}_k \mathcal{Q}_k^* \mathcal{H}^* (\mathcal{R} + \mathcal{H} \mathcal{Q}_k \mathcal{Q}_k^* \mathcal{H}^*)^{-1} (f_k - \mathcal{H} arphi_k^{(b)})$$

The previous cost function

$$J(\varphi) := \|\varphi - \varphi^{(b)}\|_{B^{-1}}^2 + \|f - H\varphi\|_{R^{-1}}^2$$

results now in this expresion to minimize:

$$J(\gamma) := \|Q_k\gamma\|_{B_k^{-1}}^2 + \|f_k - H\varphi_k^{(b)} - HQ_k\gamma\|_{R^{-1}}^2$$

• We denote the analysis error $E_k := \| \varphi^{(a)} - \varphi^{(true)} \|$

Error analysis without background contribution

Lemma

Assume that H is injective, that we study true measurement data $f = H\varphi^{(true)}$ and consider the EnKF with data term only

$$J^{(data)}(\gamma) = \|(f - H\varphi^{(b)}) - HQ_k\gamma\|_{R^{-1}}^2$$

Then, for the analysis $\varphi^{(a)}$ calculated by the EnKF the difference $\varphi^{(a)} - \varphi^{(b)}$ is the orthogonal projection of $\varphi^{(true)} - \varphi^{(b)}$ onto the ensemble space $U_k^{(L)}$ and the analysis error is given by ²

$$E_k = d_{H^*R^{-1}H} \Big(U_k^{(L)}, \varphi_k^{(true)} - \varphi^{(b)} \Big),$$

where the right-hand side denotes the distance between a point $\psi = \varphi_k^{(true)} - \varphi^{(b)}$ and the subspace $U^{(L)}$ with respect to the norm induced by the scalar product $\langle ., . \rangle_{H^*R^{-1}H}$.

²Proof in Perianez A., Reich H. and Potthast R. In preparation. 7 of 23

Illustration of Lemma

Error analysis with background term

Theorem

For H injective, the analysis $\tilde{\varphi}^{(a)}$ generated by the minimization of the whole cost function within the EnKF for perfect data $f^{(true)}$ satisfies the estimate

$$\begin{split} \left\| \tilde{\varphi}^{(a)} - \varphi^{(true)} \right\|_{HR^{-1}H} &\leq \sqrt{q^2 (E^{(b)})^2 + (1 - q^2) E_{min}^2} \\ &= E^{(b)} \sqrt{q^2 + (1 - q^2) \frac{E_{min}^2}{(E^{(b)})^2}} \end{split}$$

with some constant q < 1 depending on B, R and H, where

$$\begin{split} E_{min} &:= \min_{\varphi \in U^{(L)}} \left\| \varphi - \varphi^{(true)} \right\|_{H^*R^{-1}H} = \left\| \check{\varphi}^{(\mathfrak{d})} - \varphi^{(true)} \right\|_{H^*R^{-1}H}, \\ E^{(b)} &:= \left\| \varphi^{(b)} - \varphi^{(true)} \right\|_{H^*R^{-1}H}. \end{split}$$

Localization

- Localization denotes the restriction to a subset of physical space.
- Study the analysis in dependence of the localization radius ρ when the domain D is given by a ball D = B_ρ(x₀).

• Localization function χ_{ρ} depending on ρ such that³

$$\chi_
ho(x):=\left\{egin{array}{cc} \chi_
ho(x) & x\in D\ 0 & ext{otherwise.} \end{array}
ight.$$

• R localization⁴ modifies the observation error covariance matrix to suppress the influences of distant observations $\rightarrow R_{loc} := \chi \cdot R$

$$E^{(\rho)}(x_0) := \left\| \check{\varphi}^{(a,\rho)} - \varphi^{(true,\rho)} \right\|_{H^* R^{-1}_{loc} H}$$

³Houtekamer et al. 1998 ⁴Hunt et al. 2007 ^{10 of 23}

Localization. Convergence results.

Theorem

We study assimilation in the case where true data $\varphi^{(true)}$ are used and $\hat{\varphi}^{(a,\rho)}$ is chosen such that $\hat{\varphi}^{(a,\rho)} - \varphi^{(b)}$ is the orthogonal projection of $\varphi^{(true)} - \varphi^{(b)}$ onto the ensemble space $U^{(L)}$. Assume that there is c, C > 0 such that for all $x \in D$ there is $l \in \{1, ..., L\}$ such that

$$|\varphi^{(l)}(x) - \varphi^{(b)}(x)| \ge c,$$

and that the ensemble members are continuously differentiable on D with

$$|
abla(arphi^{(j)}(x) - arphi^{(b)}(x))| \leq C, \;\; x \in D, \;\; j \in \{1,...,L\}.$$

Further assume that $\varphi^{(true)} - \varphi^{(b)}$ is continuously differentiable on D. Then, we have

$$\sup_{x_0\in D}E^\rho(x_0)\leq \tilde{C}\rho \quad \to 0, \ \ \rho\to 0$$

with some constant \tilde{C} depending on C, H and R.

11 of 23

Remarks

Using last two theorems we can derive

$$\left\| \widetilde{\varphi}^{(s,
ho)} - arphi^{(true,
ho)}
ight\|_{H^* R_{loc}^{-1} H} \leq \sqrt{E^{(b,
ho)} q^2 + (1-q^2) C
ho^2}.$$

- The first term q² in the square root reflects the influence of the *background error*.
- The second *approximation error* term can be made small by reducing the localization radius ρ .
- In a balanced relationship between background and data, q is between 0 and 1.
- *Effective observation error*: With data error, ρ needs to be kept sufficiently large since it also controls the number of observations used for the assimilation.

A one-dimensional example

- Ensemble space given by linear functions
 U^(L) := {a + bx : a, b ∈ ℝ} ⊂ L²([0, A]).
- The truth $\varphi^{(true)}$ given by a quadratic function $\varphi^{(true)}(x) := B \cdot (x C)^2, \ x \in [0, A].$
- Observations from a Gaussian distribution with variance σ_{obs} .
- Localization by a decomposition of [0, A] into $q \in \mathbb{N}$ subsets $[A_j, A_{j+1}]$ where $A_j := \frac{j \cdot A}{q}, \ j = 0, ..., q$.
- Localization radius here $\rho = A/2q$.
- On each subset the analysis is carried out by solving the least squares problem in $U^{(L)}|_{[A_i,A_{i+1}]}$.

Figure: The truth (blue line) overlaps with the observations (blue circles) due to σ_{obs} takes very small values ($\sigma_{obs} = 0.0005$). The green line shows background information. In (a) we show the analysis without any localization. Localization radii gradually decreases in (b), (c), and (d).

Figure: Observation error $\sigma_{obs} = 0.05$. No localization is applied for (a). In (b), (c) and (d) the localization radii is progressively reduced.

Figure: Higher observation error, $\sigma_{obs} = 0.5$, is provided. The analysis in (a) is computed with no localization, being progressively smaller in (b), (c) and (d) cases.

Estimating fronts in a 2d example with LETKF ⁵

Figure: The different ensemble members are shown in (a)-(e). The truth is displayed in (f). The first guess mean and spread are plotted in (g) and (h), respectively.

⁵Hunt et al. 2007

Figure: Truth (front) and observations (red crosses) for $\sigma_{obs} = 0.1$ in (a). Truth (a) is approximated without any localization procedure in (b). In (c) $\rho_{18 \text{ of } 23}^{}$, and in (d) $\rho = 5$.

Figure: Truth and observations for $\sigma_{obs} = 0.5$. (a) is approximated without any localization in (b), with $\rho = 15$ in (c), $\rho = 5$ in (d) and $\rho = 1$ in (e).

Optimal localization radius

- Estimation of $\rho_{\textit{loc}}$ as a function of $\sigma_{\textit{obs}}$ and observation density μ .
- **Approximation error** (or undersampling error⁶) decreases with smaller localization radius.
- Effective observation error decreases with a larger *ρ*, as a larger number of observations gives a better statistical estimates.
- This leads to the error asymptotics

et al. 2007

$$E(\rho) = \alpha \rho^{p} + \frac{\beta \sigma_{obs}}{\sqrt{\mu}} \rho^{-\frac{d}{2}}, \ \rho > 0,$$

• The minimum of
$$E(\rho) \rightarrow \rho_{min} = c \left(\frac{d}{\rho}\right)^{\frac{2}{d+2\rho}}$$
 with $c(\alpha, \beta, \rho, \sigma_{obs}, \mu)$

Figure: In (a) we show the theoretical error curve for the case d = 1 and p = 1. The numerical results (similar curves shown in Greybush et al. 2011) are shown in (b). Here, we display three curves for $\sigma_{obs} \in \{0.0005 \ 0.05 \ 0.5\}$.

Figure: In (a) we show the theoretical error curve for the case d = 2 and p = 1. Here, we display three curves for $\sigma_{obs} \in \{0.0001 \ 0.1 \ 0.5\}$.

Outlook / Conclusion

- Optimal localization length ρ_{loc} depending on σ_{obs} and density of observation. These results are analogous for the L95-LETKF.
- For fixed ρ_{loc} in LETKF: N_{obs} > (N_{ens} 1) gives better results only if ensemble-subspace is appropriated.
- Next steps: Error analysis for **two-step analysis** with different localization radius for each kind of observation assimilated

$$\begin{aligned}
\varphi_1^{(a)} &= \varphi^{(b)} + BH_1^*(R_{1,\rho_1} + H_1BH_1^*)^{-1}(f_1 - H_1\varphi^{(b)}) \\
\varphi_2^{(a)} &= \varphi_1^{(a)} + B_1H_2^*(R_{2,\rho_2} + H_2B_1H_2^*)^{-1}(f_2 - H_2\varphi_1^{(a)}) \\
\varphi_{total}^{(a)} &= \varphi_2^{(a)}
\end{aligned}$$

• Two-step analysis gives better results if the two observation types have $\sigma_{obs}^1 >> \sigma_{obs}^2.$

23 of 23

Proof of Lemma

Since we have

$$\| (f - H\varphi^{(b)}) - HQ_k\gamma \|_{R^{-1}}^2 = \| (H(\varphi^{(true)} - \varphi^{(b)}) - HQ_k\gamma \|_{R^{-1}}^2 \\ = \| (\varphi^{(true)} - \varphi^{(b)}) - Q_k\gamma \|_{H^*R^{-1}H}^2$$

The element $Q\gamma^{(a)}$ is the *best approximation* in $U^{(L)}$ to the element $\varphi^{(true)} - \varphi^{(b)}$ with respect to the scalar product $\langle \cdot, \cdot \rangle_{H^*R^{-1}H}$.

For the best approximation ψ_* to an element ψ in a Hilbert space X with scalar product $\langle \cdot, \cdot \rangle$ with respect to a finite-dimensional subspace U, for all elements $u \in U$ we have $\langle u, \psi - \psi_* \rangle = 0$.

The analysis $\varphi^{(a)} - \varphi^{(b)} = Q\gamma^{(a)}$ is the orthogonal projection of $\varphi^{(true)} - \varphi^{(b)}$ onto $U_k^{(L)}$.

Finally, we now estimate

$$\begin{aligned} \|\varphi^{(a)} - \varphi^{(true)}\|_{H^*R^{-1}H} &= \|\varphi^{(a)} - \varphi^{(b)} + \varphi^{(b)} - \varphi^{(true)}\|_{H^*R^{-1}H} \\ &= \min_{\gamma} \|Q\gamma - (\varphi^{(true)} - \varphi^{(b)})\|_{H^*R^{-1}H} \\ &= d_{H^*R^{-1}H} \Big(U_k^{(L)}, \varphi^{(true)} - \varphi^{(b)} \Big), \end{aligned}$$

which completes the proof.

Lemma

Let ψ be a continuously differentiable function defined in some domain V in \mathbb{R}^n , $n \in \mathbb{N}$, which satisfies $\psi(x_0) = 0$ for some $x_0 \in V$. Then we have

 $\sup_{x\in B_\rho(x_0)}|\psi(x)|\leq C\rho$

with the constant $C = \sup_{x \in V} |\nabla \psi(x)|$. In particular, we obtain

 $\sup_{x\in B_
ho(x_0)}|\psi(x)| o 0, \
ho o 0$

We carry out the proof for one $x_0 \in V$. We can choose an ensemble member *I* such that the previous Lemma is satisfied. We set

$$\psi(x) := \frac{|\varphi^{(true)}(x_0) - \varphi^{(b)}(x_0)|}{|\varphi^{(l)}(x_0) - \varphi^{(b)}(x_0)|} (\varphi^{(l)}(x) - \varphi^{(b)}(x)) - (\varphi^{(true)}(x) - \varphi^{(b)}(x)).$$

yield

$$\sup_{x\in B_{\rho}(x_0)}|\psi(x)|\leq C\rho\rightarrow 0, \ \rho\rightarrow 0$$

Using the estimate

$$\begin{aligned} \langle \psi, H^* R^{-1} H \psi \rangle_{B_{\rho}(x_0)} &\leq \|H^*\| \|H\| \|R^{-1}\| \langle \psi, \psi \rangle_{B_{\rho}(x_0)} \\ &\leq \|H^*\| \|H\| \|R^{-1}\| |B_{\rho}(x_0)| \|\psi\|_{\infty, B_{\rho}(x_0)}^2. \end{aligned}$$

Hence, as $\|\psi\|_{\infty,B_{\rho}(x_0)} = \sup_{x\in B_{\rho}(x_0)} |\psi(x)| \le C\rho \to 0, \ \rho \to 0.$

This leads to the estimate

$$\|\psi\|_{H^*R^{-1}H,\rho}^2 \le au_{H,R} \ \rho \to 0, \ \ \rho \to 0$$

with $\tau_{H,R} := C \|H^*\| \|H\| \|R^{-1}\| |B_{\rho}(x_0)|.$

Being ψ the difference between an element in the ensemble space $U^{(L)}$ and $\varphi^{(true)} - \varphi^{(b)}$, we can write

$$\left\|\hat{\varphi}^{(\mathfrak{a},\rho)}-\varphi^{(true)}\right\|_{H^*R^{-1}H,\rho}=\left\|\left(\hat{\varphi}^{(\mathfrak{a},\rho)}-\varphi^{(b)}\right)-\left(\varphi^{(true)}-\varphi^{(b)}\right)\right\|_{H^*R^{-1}H,\rho}$$

П

Finally, with the division by $|B_{\rho}(x_0)|$ now leads to \hat{E} with $\tilde{C} = C \|H^*\| \|H\| \|R^{-1}\|$, and the proof is complete.