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Challenge

• Understand the basic properties of localization in the ensemble
Kalman filter scheme.

• Define an adaptive localization depending on the density of data,
observation and background error.

• Decomposition of the error sources to determine its effect on the
optimal localization length scale.

• Perspective of approximation theory and functional analysis.

• Addressed with numerical experimental results.
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Introduction

In order to find out ϕ we should minimize the functional

J(ϕ) := ‖ϕ− ϕ(b)‖2
+ ‖f − Hϕ(b)‖2

.

The normal equations are obtained from first order optimality
conditions

∇ϕJ = 0.

Usually, the relation between variables at different points is
incorporated by using covariances/weighted norms:

J(ϕ) := ‖ϕ− ϕ(b)‖2

B−1 + ‖f − Hϕ‖2
R−1 ,

The update formula is now

ϕ(a) = ϕ(b) + BH∗(R + HBH∗)−1(f − Hϕ(b))
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Ensemble Kalman Filter

• In the KF method B evolves with the model dynamics:
Bk+1 = MBk M∗.

• EnKF1 is a Monte Carlo approximation to the KF.

• EnKF methods use reduced rank estimation techniques to
aproximate the classical filters.

• The ensemble matrix Qk :=
(
ϕ

(1)
k − ϕ

(b)
k , ..., ϕ

(L)
k − ϕ

(b)
k

)
.

• In the EnKF methods the background convariance matrix is
represented by B := 1

L−1 Qk Q∗k .

• Update solved in a low-dimensional subspace

U(L) := span{ϕ(1)
k − ϕ

(b)
k , ..., ϕ

(L)
k − ϕ

(b)
k }.

1Evensen 1994
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• The updates of the EnKF are a linear combination of the columns
of Qk .

ϕk − ϕ
(b)
k =

L∑
l=1

γl

(
ϕ

(l)
k − ϕ

(b)
k

)
= Qkγ

ϕ
(a)
k = ϕ

(b)
k + Qk Q∗k H∗(R + HQk Q∗k H∗)−1(fk − Hϕ

(b)
k )

• The previous cost function

J(ϕ) := ‖ϕ− ϕ(b)‖2

B−1 + ‖f − Hϕ‖2
R−1

results now in this expresion to minimize:

J(γ) := ‖Qkγ‖2
B−1

k

+ ‖fk − Hϕ
(b)
k − HQkγ‖2

R−1

• We denote the analysis error Ek := ‖ϕ(a) − ϕ(true)‖
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Error analysis without background contribution

Lemma
Assume that H is injective, that we study true measurement data f = Hϕ(true) and
consider the EnKF with data term only

J(data)(γ) = ‖(f − Hϕ(b))− HQkγ‖2
R−1

Then, for the analysis ϕ(a) calculated by the EnKF the difference ϕ(a) − ϕ(b) is the

orthogonal projection of ϕ(true) − ϕ(b) onto the ensemble space U
(L)
k and the analysis error

is given by 2

Ek = dH∗R−1H

(
U

(L)
k , ϕ

(true)
k − ϕ(b)

)
,

where the right-hand side denotes the distance between a point ψ = ϕ
(true)
k −ϕ(b) and the

subspace U(L) with respect to the norm induced by the scalar product < ., . >H∗R−1H .

2Proof in Perianez A., Reich H. and Potthast R. In preparation.
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Illustration of Lemma

ϕ(true)

x

y
ϕ(true)

ϕ(true) − ϕ(a)

U
(L)

ϕ(a) − ϕ(b)

ϕ(b)

ϕ̃(a)

ϕ(a)
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Error analysis with background term

Theorem
For H injective, the analysis ϕ̃(a) generated by the minimization of the whole cost function
within the EnKF for perfect data f (true) satisfies the estimate∣∣∣∣∣∣ϕ̃(a) − ϕ(true)

∣∣∣∣∣∣
HR−1H

≤
√

q2(E (b))2 + (1− q2)E 2
min

= E (b)

√
q2 + (1− q2)

E 2
min

(E (b))2

with some constant q < 1 depending on B, R and H, where

Emin := min
ϕ∈U(L)

∣∣∣∣∣∣ϕ− ϕ(true)
∣∣∣∣∣∣

H∗R−1H
=
∣∣∣∣∣∣ϕ̌(a) − ϕ(true)

∣∣∣∣∣∣
H∗R−1H

,

E (b) :=
∣∣∣∣∣∣ϕ(b) − ϕ(true)

∣∣∣∣∣∣
H∗R−1H

.

9 of 23



Localization

• Localization denotes the restriction to a subset of
physical space.

• Study the analysis in dependence of the
localization radius ρ when the domain D is given
by a ball D = Bρ(x0).

x

y

• Localization function χρ depending on ρ such that3

χρ(x) :=

{
χρ(x) x ∈ D
0 otherwise.

• R localization4 modifies the observation error covariance matrix to
suppress the influences of distant observations → Rloc := χ · R

E (ρ)(x0) :=
∣∣∣∣∣∣ϕ̌(a,ρ) − ϕ(true,ρ)

∣∣∣∣∣∣
H∗R−1

loc
H

3Houtekamer et al. 1998
4Hunt et al. 2007
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Localization. Convergence results.

Theorem
We study assimilation in the case where true data ϕ(true) are used and ϕ̂(a,ρ) is chosen
such that ϕ̂(a,ρ) − ϕ(b) is the orthogonal projection of ϕ(true) − ϕ(b) onto the ensemble
space U(L). Assume that there is c, C > 0 such that for all x ∈ D there is l ∈ {1, ..., L}
such that

|ϕ(l)(x)− ϕ(b)(x)| ≥ c,

and that the ensemble members are continuously differentiable on D with

|∇(ϕ(j)(x)− ϕ(b)(x))| ≤ C , x ∈ D, j ∈ {1, ..., L}.

Further assume that ϕ(true) − ϕ(b) is continuously differentiable on D. Then, we have

sup
x0∈D

Eρ(x0) ≤ C̃ρ → 0, ρ→ 0

with some constant C̃ depending on C, H and R.
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Remarks

• Using last two theorems we can derive

∣∣∣∣∣∣ϕ̃(a,ρ) − ϕ(true,ρ)
∣∣∣∣∣∣

H∗R−1
loc

H
≤
√

E (b,ρ)q2 + (1− q2)Cρ2.

• The first term q2 in the square root reflects the influence of the
background error.

• The second approximation error term can be made small by
reducing the localization radius ρ.

• In a balanced relationship between background and data, q is
between 0 and 1.

• Effective observation error: With data error, ρ needs to be kept
sufficiently large since it also controls the number of observations
used for the assimilation.
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A one-dimensional example

• Ensemble space given by linear functions
U(L) := {a + bx : a, b ∈ R} ⊂ L2([0,A]).

• The truth ϕ(true) given by a quadratic function
ϕ(true)(x) := B · (x − C )2, x ∈ [0,A].

• Observations from a Gaussian distribution with variance σobs .

• Localization by a decomposition of [0,A] into q ∈ N subsets
[Aj ,Aj+1] where Aj := j ·A

q , j = 0, ..., q.

• Localization radius here ρ = A/2q.

• On each subset the analysis is carried out by solving the least
squares problem in U(L)|[Aj ,Aj+1].
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(a) (b)

(c) (d)

Figure: The truth (blue line) overlaps with the observations (blue circles)
due to σobs takes very small values (σobs = 0.0005). The green line shows
background information. In (a) we show the analysis without any
localization. Localization radii gradually decreases in (b), (c), and (d).
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(a) (b)

(c) (d)

Figure: Observation error σobs = 0.05. No localization is applied for (a). In
(b), (c) and (d) the localization radii is progressively reduced.
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(a) (b)

(c) (d)

Figure: Higher observation error, σobs = 0.5, is provided. The analsyis in
(a) is computed with no localization, being progressively smaller in (b), (c)
and (d) cases.
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Estimating fronts in a 2d example with LETKF 5

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure: The different ensemble members are shown in (a)-(e). The truth is
displayed in (f). The first guess mean and spread are plotted in (g) and (h),
respectively.

5Hunt et al. 2007
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(a) (b)

(c) (d)

Figure: Truth (front) and observations (red crosses) for σobs = 0.1 in (a).
Truth (a) is approximated without any localization procedure in (b). In (c)
ρ = 15, and in (d) ρ = 5.
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(a) (b) (c)

(d) (e)

Figure: Truth and observations for σobs = 0.5. (a) is approximated without
any localization in (b), with ρ = 15 in (c), ρ = 5 in (d) and ρ = 1 in (e).

19 of 23



Optimal localization radius

• Estimation of ρloc as a function of σobs and observation density µ.

• Approximation error (or undersampling error6) decreases with
smaller localization radius.

• Effective observation error decreases with a larger ρ, as a larger
number of observations gives a better statistical estimates.

• This leads to the error asymptotics

E (ρ) = αρp +
βσobs√

µ
ρ−

d
2 , ρ > 0,

• The minimum of E (ρ) → ρmin = c
(

d
p

) 2
d+2p

with c(α, β, p, σobs , µ)

6Oke et al. 2007
20 of 23



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

e
r
r

ρloc

σobs = 0.5
σobs = 0.05
σobs = 0.0005

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

e
r
r

ρloc

σobs = 0.5
σobs = 0.05
σobs = 0.0005

(b)

Figure: In (a) we show the theoretical error curve for the case d = 1 and
p = 1. The numerical results (similar curves shown in Greybush et al. 2011)
are shown in (b). Here, we display three curves for
σobs ∈ {0.0005 0.05 0.5}.
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Figure: In (a) we show the theoretical error curve for the case d = 2 and
p = 1. Here, we display three curves for σobs ∈ {0.0001 0.1 0.5}.
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Outlook / Conclusion

• Optimal localization length ρloc depending on σobs and density of
observation. These results are analogous for the L95-LETKF.

• For fixed ρloc in LETKF: Nobs > (Nens − 1) gives better results
only if ensemble-subspace is appropiated.

• Next steps: Error analysis for two-step analysis with different
localization radius for each kind of observation assimilated

ϕ
(a)
1 = ϕ(b) + BH∗1 (R1,ρ1 + H1BH∗1 )−1(f1 − H1ϕ

(b))

ϕ
(a)
2 = ϕ

(a)
1 + B1H∗2 (R2,ρ2 + H2B1H∗2 )−1(f2 − H2ϕ

(a)
1 )

ϕ
(a)
total = ϕ

(a)
2

• Two-step analysis gives better results if the two observation types
have σ1

obs >> σ2
obs .
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Proof of Lemma

Since we have

‖(f − Hϕ(b))− HQkγ‖2
R−1 = ‖(H(ϕ(true) − ϕ(b))− HQkγ‖2

R−1

= ‖(ϕ(true) − ϕ(b))− Qkγ‖2
H∗R−1H

The element Qγ(a) is the best approximation in U(L) to the element
ϕ(true) − ϕ(b) with respect to the scalar product 〈·, ·〉H∗R−1H .

For the best approximation ψ∗ to an element ψ in a Hilbert space X
with scalar product 〈·, ·〉 with respect to a finite-dimensional subspace
U, for all elements u ∈ U we have 〈u, ψ − ψ∗〉 = 0.
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The analysis ϕ(a) − ϕ(b) = Qγ(a) is the orthogonal projection of

ϕ(true) − ϕ(b) onto U
(L)
k .

Finally, we now estimate

‖ϕ(a) − ϕ(true)‖H∗R−1H = ‖ϕ(a) − ϕ(b) + ϕ(b) − ϕ(true)‖H∗R−1H

= min
γ
‖Qγ − (ϕ(true) − ϕ(b))‖H∗R−1H

= dH∗R−1H

(
U

(L)
k , ϕ(true) − ϕ(b)

)
,

which completes the proof. 2

2 of 6



Lemma
Let ψ be a continuously differentiable function defined in some domain V in Rn, n ∈ N,
which satisfies ψ(x0) = 0 for some x0 ∈ V . Then we have

sup
x∈Bρ(x0)

|ψ(x)| ≤ Cρ

with the constant C = supx∈V |∇ψ(x)|. In particular, we obtain

sup
x∈Bρ(x0)

|ψ(x)| → 0, ρ→ 0
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Proof of Theorem

We carry out the proof for one x0 ∈ V . We can choose an ensemble
member l such that the previous Lemma is satisfied. We set

ψ(x) :=
|ϕ(true)(x0)− ϕ(b)(x0)|
|ϕ(l)(x0)− ϕ(b)(x0|

(
ϕ(l)(x)− ϕ(b)(x)

)
−
(
ϕ(true)(x)− ϕ(b)(x)

)
.

yield
sup

x∈Bρ(x0)
|ψ(x)| ≤ Cρ→ 0, ρ→ 0.
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Using the estimate

〈ψ,H∗R−1Hψ〉Bρ(x0) ≤ ||H∗|| ||H||
∣∣∣∣R−1

∣∣∣∣ 〈ψ,ψ〉Bρ(x0)

≤ ||H∗|| ||H||
∣∣∣∣R−1

∣∣∣∣ |Bρ(x0)| ||ψ||2∞,Bρ(x0) .

Hence, as ||ψ||∞,Bρ(x0) = supx∈Bρ(x0) |ψ(x)| ≤ Cρ→ 0, ρ→ 0.

This leads to the estimate

||ψ||2H∗R−1H,ρ ≤ τH,R ρ→ 0, ρ→ 0

with τH,R := C ||H∗|| ||H||
∣∣∣∣R−1

∣∣∣∣ |Bρ(x0)|.
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Being ψ the difference between an element in the ensemble space
U(L) and ϕ(true) − ϕ(b), we can write∣∣∣∣∣∣ϕ̂(a,ρ) − ϕ(true)

∣∣∣∣∣∣
H∗R−1H,ρ

=
∣∣∣∣∣∣(ϕ̂(a,ρ) − ϕ(b)

)
−
(
ϕ(true) − ϕ(b)

)∣∣∣∣∣∣
H∗R−1H,ρ

Finally, with the division by |Bρ(x0)| now leads to Ê with
C̃ = C ||H∗|| ||H||

∣∣∣∣R−1
∣∣∣∣ , and the proof is complete. 2
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