

DWD 6

The comparison of the COSMO-CLM and COSMO-EU

Susanne Brienen

F. Davary Adalatpanah, B. Früh, D. Majewski, J. Förstner, G. Vogel, C. Heret, J.-P. Schulz, U. Damrath, P. Becker - DWD, Offenbach/Lindenberg;

A. Will, K. Keuler - BTU Cottbus, Germany

- overview of the project
- simulation design
- results:
 - climatological evaluation with gridded datasets
 - standard NWP verification with SYNOP data
 - special site validation in Lindenberg
 - convergence
- summary and outlook

overview of the project

- the model COSMO-CLM is used in both weather forecast and regional climate modelling
- idea to compare the same model in both modes and learn from each other

Aims of this study

investigation of the predictive quality of the COSMO-CLM simulations in climate configuration compared to routine forecasts

analysis of the error growth with increasing lead time in comparison of COSMO-CLM and COSMO-EU

investigation of the convergence of the NWP to the climate mode

simulation design

3 types of simulations

CCLM-NWP

weather forecast mode

daily forecasts for 2009, starting 00UTC

configuration of IPCC-AR5 simulations

COSMO-EU

operational weather forecast version

> daily forecasts for 2009, starting 00UTC

standard NWP configuration

CCLM-Climate

climate version

continuous simulation for 2009

configuration of IPCC-AR5 simulations

	CCLM-NWP	COSMO-EU	CCLM-Climate
INT2LMsource	INT2LM1.10		INT2LM1.10
code	CLM6 gme-ml		CLM6 gme-ml
COSMO source code	COSMO4.8 CLM17	COSMO4.6 – 4.10	COSMO4.8 CLM17
simulation period	01.01.2009	01.01.2009	01.10.2008
	-31.12.2009	-31.12.2009	-31.12.2009
analysis period	<u> </u>		
forcing	GME forecast	GME forecast	GME analysis
domain	IPCC-AR5-EU	COSMO-EU	IPCC-AR5-EU
grid spacing	0.11∘ (12 km)	0.0625∘ (7 km)	0.11∘ (12 km)
forecasting period	96 h (4 Days)	78 h (~ 3Days)	—
configuration (namelist settings)	IPCC-AR5-EU	COSMO-EU	IPCC-AR5-EU
Data assimilation	\checkmark		X
soil moisture analysis			X
ふ			

3 simulations \rightarrow 8 model realizations

2 model domains

results: climatological evaluation with gridded datasets

where: Europe and 3 selected subregions
what: T_2M, TOT_PREC, MSLP, CLCT
data: gridded datasets with daily resolution: E-OBS (v.6, 0.25°), CRU (0.5°)

Dayl Day2 Day3 Day4

annual cycle, T_2M BIAS to E-OBS, all realizations

annual cycle, TOT_PREC BIAS to E-OBS, all realizations

5 March 2013

Summary

• mostly larger error with increasing forecast time (some cooling of warm biases over Central Europe and Scandinavia)

• clear boundary effect for precipitation (larger extent in COSMO-EU)

• NWP runs closer together than CCLM-Climate (less for TOT_PREC)

results: standard NWP verification with SYNOP data

where: SYNOP stations averaged over same subregions

what: verification scores (RMSE, BIAS, POD, FAR, ETS, HSS) for same parameters, as function of forecast time *(only COSMO-EU vs. CCLM-NWP)*

Deutscher Wetterdienst Wetter und Klima aus einer Hand

2m temp., January, RMSE + BIAS, 3 subregions

Deutscher Wetterdienst Wetter und Klima aus einer Hand

2m temp., July, RMSE + BIAS, 3 sub-regions

BIAS, January, Middle Europe

precipiation > 0.1mm, January, Middle Europe

-0.5

0.5

0.0

0 B 12 18 24 30 36 42 48 54 50 66 72 fet 0 8 12 18 24 30 36 42 48 54 60 66 72

fet

-0.8

-1.0

0 B 12 18 24 30 36 42 48 54 60 66 72

fet

0 8 12 18 24 30 36 42 48 54 60 66 72 fet

0,5

Summary

• mostly non-remarkable differences for precipitation and cloud cover

- MSL pressure: deviations in the BIAS (due to different domains?)
- 2m temp: COSMO-EU distinctly better in Scandinavia; large diurnal cycle of scores

results: special site validation in Lindenberg

where: Lindenberg/Falkenberg: measurement site of DWD in Eastern Germany

+ some SRNWP sites: Toulouse, San Pietro Capofiume, Payerne, Cabauw

what: annual cycle of 2m temperature, precipitation, soil moisture

annual cycle of 2m temperature BIAS to observations

Soil moisture and precipitation

Summary

• 2m temp: similar behaviour at SRNWP stations and ME region

 soil moisture: winter too dry, winter/spring: CCLM-Climate closest to obs, summer/autumn: CCLM-NWP; problems with COSMO-EU

• precipitation: CCLM-NWP4 closest

results: convergence

where: all land/water points; European sub-regions (Scandinavia)

what: deviations from CCLM-Climate, differences between forecast ages

T_2M, Scandinavia, difference to CCLM-Climate

TOT_PREC, Scandinavia, difference to CCLM-Climate

annual cycle, CCLM-NWP realizations – CCLM-Climate

Susanne Brienen, DWD-KU11

difference between subsequent realizations

difference between subsequent realizations: Scandinavia

Summary

convergence only clearly visible in few cases (due to high variability?)
e.g. temperature/precipitation over water

and in Scandinavia in some months

• nothing to be seen for PMSL and CLCT

conclusions and outlook

what have we learned so far?

predictive quality: CCLM-NWP with data assimilation has similar predictive quality as COSMO-EU (different boundary effects)

error growth: errors generally growing with increasing forecast time (esp. T_2M and PMSL Bias), not quantified in detail yet

> **convergence:** difficult to see because of high variability/uncertainty; most pronounced over water and for precipitation

> > 5 March 2013

Outlook

- analyze diurnal cycle
- uncertainty not quantified yet (analyze perturbation run)
- causes for deviations from theory have still to be investigated more closely
- not yet accounted for inter-annual variability: 2010/11 in preparation

