Influence of grid resolution and meteorological forcing on air quality simulations: A sensitivity study with the modelling system COSMO-MUSCAT

Ralf Wolke, Detlef Hinneburg, Wolfram Schröder

Leibniz Institute for Tropospheric Research Leipzig, Germany

wolke@tropos.de

05.03.13

COSMO User Meeting, Offenbach

eibniz Institute for Tropospheric Research

TROPOS

- > Motivation
- Main features of COSMO-MUSCAT
- Description of different model setups
- Model study (focus on Central Europe)
 - Statistical analysis
 - Impact of wild land fires
 - Influence of grid size
 - Influence of meteorology / meteorological driver
- Summary and outlook

Motivation

- Check the sensitivity and robustness of COSMO-MUSCAT against "technical" changes in the model setup
- Varying the grid size Influence on meteorological forcing as well as the calculated emission and deposition fluxes
- Studies of the effect of grid resolution in literature (e.g. Salvador et al., 1999; Geco et al., 2005), not always an improvement in the results (Mass et al., 2002)
- To get feeling for observed model "feedbacks" in relation to other model variations
- Simulation of the year 2006 on the European domain in AQMEII shows
 - Periods with very elevated PM concentrations are observed.
 - COSMO-MUSCAT can not capture these peaks.
- Different setups are investigated for the two corresponding periods (21 April – 20 May, October) to analyze especially the influence of grid resolution and the meteorological forcing.

Chemistry-Transport Model MUSCAT

(« MUltiScale Chemistry Aerosol Transport »)

- Transport and chemical transformation of gas phase pollutants and particles in the atmosphere
- Online coupling with COSMO (version 4.18)

- Applied from regional to urban scale
- Mainly used in forecast mode without data assimilation and nudging
- Direct and semi-direct feedback are implemented.

Gas phase ("*read in*"):

- RACM (Stockwell et al., 1997) +
- MIM2 (Karl et al., 2006)
 (98 species and over 250 reactions)
- > Other modules (e.g., amine chemistry)

Aerosol model:

- > Mass-based approach (e.g., *EMEP*) or
- Modal approach M7 (Vignati et al, 2004):
 - 4 internal-mixed and 3 external modes
 - sulphate, sea salt, dust, EC, OC extended by
 - nitrate and ammonium
 - SIA by ISORROPIA (Nenes et al., 1998)
 - SOA by SORGAM (Schell et al., 2001)
- Dust: sectional (5 bins)

Dry and wet deposition, sedimentation

Emissions:

- Anthropogenic (11 snaps, area + point, fires)
- Biogenic (Günther et al., 1993)
- Seasalt (Long et al., 2011)

➔ see also Poster of Stefan Barthel !!

• Space discretization

- > Staggered grid. Finite-volume techniques.
- > *Multiblock approach* (different grid resolutions in the domain)
- > Advection: Third-order upwind
- Time-integration: IMEX scheme (Knoth & Wolke, 1998)
 - Explicit second-order Runge-Kutta for horizontal advection
 - Second order BDF method for the rest: Jacobian is calculated explicitly, linear systems by Gauss-Seidel iterations or AMF
 - > Automatic step size control
 - Multirate approach (Schlegel et al., 2012)
- Parallelization
 - > Domain decomposition
 - > Dynamical load-balancing by redistribution of blocks

Coupling Scheme (+ feedback to COSMO)

- Time interpolation of the meteorological fields:

 Linear interpolated in [t_n,t_{n+1}]
 Temperature, Density,....
 Time-averaged values on [t_n,t_{n+1}]
 Projected wind field

 → ensures mass conservation (elliptic equation by cg-method) !!
- Separate time step size control for COSMO and MUSCAT

Model Study

- Performed in the framework of
 AQMEII (EU+NA): "Air Quality Model Evaluation International Initiative"
 Phase 1: "Operational & dynamic evaluation" → NA + Europe: 2006
 (20 different groups have participated in phase 1!)

 Phase 2: only online-coupled models, feedback → NA + Europe: 2006 + 2010
- Simulations are performed for the EU domain and 2006. The annual simulation is included in the ENSEMBLE data base (JRC Ispra) and involved in the joint analysis.
- Anthropogenic emissions (TNO), fire emissions (FMI) and CTM boundary conditions (GEMS) provided by the AQMEII community.
- This study: 7 different setups are compared, contribution to the "Special Issue" of Atmos. Environ.
- Focus on Central Europe and on 2 one-month periods (21 April 20 May 2006 and October 2006)
- Simulations are performed in the forecast mode without feedback, nudging and DA
- Cyclic time schedule with one day spin-up of the COSMO model
- COSMO is forced by reanalyzed GME data provided by the DWD
- Simulation results are compared with ground-based measurements, radiosonde and satellite data. Statistical analysis only for ground data.

Time schedule for model runs

Time schedule for model runs

Problems:

- Jumps by restart of meteorology
- Differences in orography between the 28km, 14 km, and 7 km resolution
- Regime for analyzing "feedback": Initialization interval, assimilation ?

COSMO-MUSCAT Setups

Comparison of different model setups: Grid resolution

	Meteorolo	gy Mode	I COSMO	Chemistry Transport Model MUSCAT						
	horizontal grid	vertical grid	forcing	horizontal grid	horizontal vertical layers grid (first layer)		aerosol modul	length		
N1_28km	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	mass- based	48 h		
N1_14km	14 km	40 layers	GME reanalysis	uniform 14 km	22 (approx. 60 m)	GEMS	mass- based	48 h		
N1_multi	14 km	40 layers	GME reanalysis	multiscale (Figure)	22 (approx. 60 m)	GEMS	mass- based	48 h		
N2_nest	7 km	50 layers	nested in N1	uniform 7 km	32 (approx. 20 m)	32 rox. 20 m) N1_multi		48 h		
N2_rean	7 km	50 layers	COSMO reanalysis	uniform 7 km	32 (approx. 20 m)	N1_multi	mass- based	48 h		
N1_96h	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	mass- based	96 h		
N1_aero	28 km	n 40 GME layers reanalysis		uniform 28 km	22 (approx. 60 m)	GEMS	extended M7	48 h		
N1_nofire	S	ame conf	iguration as	<i>N1_48km</i> , b	out without "wildl	and fire" em	issions			

Comparison of different model setups: Meteorological forcing

	Meteorolo	gy Mode	I COSMO	Chem	istry Transport I	Model MUS	CAT	
	horizontal grid	vertical grid	forcing	horizontal grid	vertical layers (first layer)	boundaries	aerosol modul	length
N1_28km	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	mass- based	48 h
N1_14km	14 km	40 layers	GME reanalysis	uniform 14 km	22 (approx. 60 m)	GEMS	mass- based	48 h
N1_multi	14 km	40 layers	GME reanalysis	multiscale (Figure)	22 (approx. 60 m)	GEMS	mass- based	48 h
N2_nest	7 km	50 layers	nested in N1	uniform 7 km	32 (approx. 20 m)	N1_multi	mass- based	48 h
N2_rean	7 km	50 layers	COSMO reanalysis	uniform 7 km	32 (approx. 20 m)	N1_multi	mass- based	48 h
N1_96h	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	mass- based	96 h
N1_aero	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	extended M7	48 h
N1_nofire	S	ame conf	iguration as	<i>N1_48km</i> , b	ut without "wildl	and fire" em	issions	

Comparison of different model setups: Cycle length

	Meteorolo	ogy Mode	I COSMO	Chemistry Transport Model MUSCAT					
	horizontal grid	vertical grid	forcing	horizontal grid	vertical layers (first layer)	boundaries	aerosol modul	length	
N1_28km	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	mass- based	48 h	
N1_14km	14 km	40 layers	GME reanalysis	uniform 14 km	22 (approx. 60 m)	GEMS	mass- based	48 h	
N1_multi	14 km	40 layers	GME reanalysis	multiscale (Figure)	22 (approx. 60 m)	GEMS	mass- based	48 h	
N2_nest	7 km	50 layers	nested in N1	uniform 7 km	32 (approx. 20 m)	N1_multi	mass- based	48 h	
N2_rean	7 km	50 layers	COSMO reanalysis	uniform 7 km	32 (approx. 20 m)	N1_multi	mass- based	48 h	
N1_96h	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	mass- based	96 h	
N1_aero	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	extended M7	48 h	
N1_nofire	S	same conf	iguration as	<i>N1_48km</i> , b	out without "wildl	and fire" em	nissions		

Comparison of different model setups: Aerosol model

	Meteorolo	ogy Mode	I COSMO	Chem	istry Transport I	Model MUS	CAT		
	horizontal grid	vertical grid	forcing	horizontal vertical layers grid (first layer)		boundaries	aerosol modul	length	
N1_28km	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	mass- based	48 h	
N1_14km	14 km	40 layers	GME reanalysis	uniform 14 km	22 (approx. 60 m)	GEMS	mass- based	48 h	
N1_multi	14 km	40 layers	GME reanalysis	multiscale (Figure)	22 (approx. 60 m)	GEMS	mass- based	48 h	
N2_nest	7 km	50 layers	nested in N1	uniform 7 km	32 (approx. 20 m)	N1_multi	mass- based	48 h	
N2_rean	7 km	50 layers	COSMO reanalysis	uniform 7 km	32 (approx. 20 m)	N1_multi	mass- based	48 h	
N1_96h	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	mass- based	96 h	
N1_aero	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	extended M7	48 h	
N1_nofire	5	same conf	iguration as	<i>N1_48km</i> , b	out without "wildl	and fire" em	nissions		

Normalized Taylor diagrams for the annual N1_28km run (ENSEMBLE analysis, JRC lspra)

October 2006 for over 100 stations in Europe: rural (left) and suburban (right)

05.03.13

Comparison (both episodes): N2_rean vs. measurements

Comparison of the mean particle concentrations (April / May 2006)

Comparison of PM10 over Europe computed with different setups

05.03.13

AQMEII (October 2006): PM

AQMEII (October 2006): PM

PMSek = total secondary formed organic and inorganic mass PMFrak = PMSek / PM10

Comparison of the mean particle composition in Melpitz

Comparison of the mean particle composition in Melpitz

Comparison of monthly mean values: Measurements vs. different setups

Comparison of different setups: Statistical analysis

	Р	articulat	te Matter			Composition						
	PM1	0	PM2	.5	Sulph	ate	Nitra	ate	Ammo	nium		
	(14 stat	ions)	(10 stat	ions)	(7 stati	ons)	(7 stati	ions)	(7 stations)		SIA	
Model Setup	Average [µg/m3]	PCC	Average [µg/m3]	PCC	Average [µg/m3]	PCC	Average [µg/m3]	PCC	Average [µg/m3]	PCC	[%	
						21 Ap	ril - 20 Ma	i 2006				
Observation	27.81		20.12		3.49		3.95		1.90		33.6	
N1_28km	28.29	0.73	22.12	0.74	4.39	0.49	5.13	0.44	2.72	0.51	43.2	
N1_14km	25.48	0.74	19.17	0.75	3.36	0.49	4.50	0.48	2.25	0.52	39.6	
N1_multi	25.17	0.75	19.06	0.75	3.36	0.49	4.49	0.47	2.24	0.49	40.1	
<u>N2_nest</u>	24.33	0.75	18.16	0.75	3.32	0.49	3.90	0.54	2.06	0.52	38.1	
N2_rean	28.35	0.77	21.90	0.79	3.72	0.60	5.61	0.58	2.67	0.64	42.3	
N1_96h	26.28	0.75	20.43	0.75	4.31	0.47	4.54	0.54	2.52	0.55	43.3	
<u>N1_Aero</u>	24.80	0.75	20.24	0.66	4.40	0.51	4.24	0.36	2.09	0.42	43.3	
						1 - 3	1 October .	2006				
Observation	21.17		15.54		3.11		4.36		1.78		43.7	
N1_28km	20.13	0.78	17.53	0.77	4.00	0.88	5.90	0.72	2.83	0.79	63.3	
N1_14km	18.35	0.58	13.91	0.55	2.75	0.60	5.03	0.55	2.23	0.52	54.5	
N1_multi	18.39	0.57	14.12	0.53	2.79	0.59	5.11	0.55	2.26	0.51	55.3	
N2_nest	17.84	0.63	12.80	0.59	2.71	0.63	4.19	0.63	1.98	0.59	49.8	
N2_rean	19.19	0.78	15.55	0.75	3.12	0.76	5.83	0.77	2.57	0.73	60.0	
N1_96h	19.51	0.73	16.19	0.74	3.57	0.84	5.36	0.66	2.56	0.74	58.9	
<u>N1_Aero</u>	17.85	0.78	16.01	0.74	3.98	0.89	5.06	0.68	2.29	0.77	63.5	

Comparison of different setups: Statistical analysis

	Р	articulat	te Matter				Co	mpositio	n		
	PM1	10	PM2	.5	Sulph	ate	Nitra	nte	Ammor	nium	
	(14 stat	tions)	(10 stat	ions)	(7 stati	ons)	(7 stati	ions)	(7 stations)		SIA
Model Setup	Average [µg/m3]	PCC	Average [µg/m3]	PCC	Average [µg/m3]	PCC	Average [µg/m3]	PCC	Average [µg/m3]	PCC	[%
	21 April - 20 Mai 2006										
Observation	27.81		20.12		3.49		3.95		1.90		33.6
N1_28km	28.29	0.73	22.12	0.74	4.39	0.49	5.13	0.44	2.72	0.51	43.2
N1_14km	25.48	0.74	19.17	0.75	3.36	0.49	4.50	0.48	2.25	0.52	39.6
N1_multi	25.17	0.75	19.06	0.75	3.36	0.49	4.49	0.47	2.24	0.49	40.1
N2_nest	24.33	0.75	18.16	0.75	3.32	0.49	3.90	0.54	2.06	0.52	38.1
N2_rean	28.35	0.77	21.90	0.79	3.72	0.60	5.61	0.58	2.67	0.64	42.3
N1_96h	26.28	0.75	20.43	0.75	4.31	0.47	4.54	0.54	2.52	0.55	43.3
<u>N1_Aero</u>	24.80	0.75	20.24	0.66	4.40	0.51	4.24	0.36	2.09	0.42	43.3
						1 - 3	1 October .	2006			
Observation	21.17		15.54		3.11		4.36		1.78		43.7
N1_28km	20.13	0.78	17.53	0.77	4.00	0.88	5.90	0.72	2.83	0.79	63.3
N1_14km	18.35	0.58	13.91	0.55	2.75	0.60	5.03	0.55	2.23	0.52	54.5
N1_multi	18.39	0.57	14.12	0.53	2.79	0.59	5.11	0.55	2.26	0.51	55.3
N2_nest	17.84	0.63	12.80	0.59	2.71	0.63	4.19	0.63	1.98	0.59	49.8
N2_rean	19.19	0.78	15.55	0.75	3.12	0.76	5.83	0.77	2.57	0.73	60.0
N1_96h	19.51	0.73	16.19	0.74	3.57	0.84	5.36	0.66	2.56	0.74	58.9
<u>N1_Aero</u>	17.85	0.78	16.01	0.74	3.98	0.89	5.06	0.68	2.29	0.77	63.5

Simulated monthly mean values of PBL height for October 2006

Simulated monthly mean values of relative humidity for October 2006

Simulated monthly mean values of temperature for October 2006

05.03.13

Simulated monthly mean values of PM10 for October 2006

Simulated monthly mean values of sulfate for October 2006

Simulated monthly mean values of nitrate for October 2006

Simulated monthly mean values of ammonium for October 2006

Simulated monthly mean values of total organic matter for October 2006

Time series in Melpitz during the period with high PM10 in October 2006

Time series in Melpitz during the period with high PM10 in October 2006

Time series in Melpitz during the period with high PM10 in October 2006

Comparison of simulated precipitation fields with 6-hour GFS forecast

05.03.13

Precipitation rate [scale: 0 – 2 mm/h] at 13th October 2006, 12:00 UTC

Comparison of different model setups (modified)

	Meteorolo	gy Mode	I COSMO	Chem	Chemistry Transport Model MUSCAT						
	horizontal grid	vertical grid	forcing	horizontal grid	vertical layers (first layer)	boundaries	aerosol modul	length			
N1_28km	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	mass- based	48 h			
N1_14km	14 km	40 layers	GME reanalysis	uniform 14 km	22 (approx. 60 m)	GEMS	mass- based	24 h			
N1_multi	14 km	40 layers	GME reanalysis	multiscale (Figure)	22 (approx. 60 m) GEMS		mass- based	24 h			
N2_nest	7 km	50 layers	nested in N1	uniform 7 km	32 (approx. 20 m)	N1_multi (24 h)	mass- based	24 h			
N2_rean	7 km	50 layers	COSMO reanalysis	uniform 7 km	32 (approx. 20 m)	N1_multi (24 h)	mass- based	24 h			
N1_96h	28 km	40 layers	GME reanalysis	uniform 28 km	22 (approx. 60 m)	GEMS	mass- based	96 h			
N1_aero	28 km	40 GME layers reanalysis		uniform 28 km	22 (approx. 60 m)	GEMS	extended M7	48 h			
N1_nofire	S	ame conf	iguration as	<i>N1_48km</i> , b	ut without "wildl	and fire" em	issions				

PM10 [scale: 0 - 80 µg/m³] at 13th October 2006, 12:00 UTC

Influence of grid resolution: N1_28 km vs. N1_14 km

PM10 [scale: 0 - 80 µg/m³] at 13th October 2006, 12:00 UTC

PM10 [scale: 0 -80 µg/m³] at 13th October 2006, 12:00 UTC

Influence of lateral boundaries and cycle length

Influence of grid size and meteorological forcing

05.03.13

	Р	articulat	te Matter			CompositionSulphateNitrateAmmonium(7 stations)(7 stations)(7 stations)AverageAverageAveragebcc							
	PM	10	PM2	2.5	Sulph	nate	e Nitrate		Ammonium				
	(14 stat	tions)	(10 stat	tions)	(7 stat	ions)	(7 stati	ions)	(7 stati	(7 stations)			
Model Setup	Average [µg/m3]	PCC	Average [µg/m3]	PCC	Average [µg/m3]	PCC	Average [µg/m3]	PCC	Average [µg/m3]	PCC	[%		
1 - 31 October 2006													
Observation	21.17		15.54		3.11		4.36		1.78		43.7		
N1_28km	20.13	0.78	17.53	0.77	4.00	0.88	5.90	0.72	2.83	0.79	63.3		
N1_14km	20.35	0.75	15.18	0.70	3.35	0.80	5.43	0.75	2.53	0.72	55,6		
N1_multi	20.39	0.78	15.22	0.73	3.39	0.79	5.18	0.75	2.52	0.74	54,4		
N2_nest	20.43	0.78	1527	0.73	3.41	0.81	5.29	0.73	2.48	0.73	54,7		
N2_rean	20.54	0.80	15.85	0.79	3.32	0.85	5.70	0.79	2.42	0.78	57,6		
N1_96h	19.51	0.73	16.19	0.74	3.57	0.84	5.36	0.66	2.56	0.74	58.9		
N1_Aero	17.85	0.78	16.01	0.74	3.98	0.89	5.06	0.68	2.29	0.77	63.5		

- Sensitivity and robustness of results against grid resolution and meteorological forcing was investigated. A set of 7 different setups was used.
- Simulations of COSMO-MUSCAT are compared with measurements. The "ensemble" of setups can capture the range and variability of PM10.
- One key finding is the relatively high responsivity concerning changes in the model configuration. Clear and unexpected large spreading of the results.
- The influence of meteorological forcing seems to more significant than the better resolution of emission and deposition fluxes.
- Online coupled vs. offline forcing with reanalyzed data: Feedback studies, forecast, process studies?

Acknowledgement

This work was supported by the AQMEII consortium, TNO, NIC Jülich and the ZIH Dresden. Furthermore, we thank the DWD for good cooperation.

Thank You!