

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

LBC perturbations for a convection-permitting COSMO ensemble system

Luca Weber, Daniel Leuenberger, André Walser, and Heini Wernli ETH Zürich and MeteoSwiss

COSMO/CLM User Seminar, 4.-7. March 2013, DWD, Offenbach

Introduction

- 3 major uncertainty sources in LAM:
 - lateral boundary conditions (LBCs)
 - initial conditions
 - model physics
- Investigate 3 different methods to perturb the LBC
 - Downscale global EPS
 - Downscale global EPS perturbations
 - Downscale global climatological perturbations (Torn et al., 2006)
- Results shall give a hint which method(s) to use in a future COSMO-E (EPS and EDA) system at MeteoSwiss

COSMO-E Configuration

- Operational MeteoSwiss COSMO-2 setup (2.2km, no deep convection scheme)
- Nested directly into ECMWF EPS (32km/20km) and ECMWF DET (16km/10km) model
- 21 ensemble members, integrated out to +120h
- All members started from same operational COSMO-2 analysis
- No physics perturbations
- No obs assimilation

LBC Perturbation Methods

C Ensemble Assessment

- Results are based on 4 case studies:
 - 2 summer cases (low advection, convection)
 - 2 autumn cases (high advection, large scale forcing)
- Compare temporal and spatial evolution of ensemble mean and spread of different methods

LBC Perturbations for COSMO EPS

L. Weber, ETH Zürich

Temporal Evolution

Temperature

Specific humidity

Mean and spread, averaged over SWISS domain, z = 0m-1500m (case 1)

6

Temperature spread at 500m (case 1)

Can Method 3 be used for EDA?

- Torn et al. (2006) used method 3 for EDA in an idealized, regional (Δx ≈ 100km) model environment
- How does it compare to method 1 in a high-resolution model in real case studies?

• Differences in spread, at +03h: < 0.07 K

v Further results

- Influence of COSMO-E strongest near surface
 - Upper level mainly downscaling of global model
- No significant model imbalances found (analysis of surface pressure tendencies)
- Sufficient to perturb T, U, V, QV (no large differences with additional perturbation of QI, QC, PP)
- Ensemble results are realistic in comparison with obs.

24h Sum of Total Precipitation

01.08.2012 00UTC +24h

Observation

COSMO-2

Conclusions

- Generally small differences between EP1 and EP2 up to 40h
- Method 3 seems suitable for data assimilation, but
 - not flow-dependent
 - initially faster growth of spread
 - -> stronger gravity & sound waves?
- Only four case studies -> to make general conclusions more cases have to be calculated

Outlook

- Use method 2 for EPS and EDA:
 - Flow-dependent pert.
 - High-res. and more frequently updated ensemble mean than using only global EPS (4x vs. 2x per day)
 - If underdispersive: Use scaled perturbations to enhance ensemble spread
- Potential use of method 3:
 - Only for EDA
 - Advantageous if more members are required than provided by global EPS