Evaluation of a 10-year cloud-resolving climate simulation driven by ERA-Interim

Nikolina Ban, Jürg Schmidli and Christoph Schär

Institute for Atmospheric and Climate Science, ETH Zürich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich COSMO/CLM User seminar March 2013

Introduction	and	motivation
000		

Method 00 Evaluation 0000000000000 Conclusion

Outline

Method

Evaluation 0000000000000 Conclusion

Clouds in climate model

GCM (100 km)

RCM (25 km)

- GCM & RCM: Parametrization of convective clouds
 - Underestimation of diurnal temperature range, overestimation of clouds, summer convective precipitation poorly represented (e.g. Dai and Trenberth, 2004; Brockhaus et al., 2008)

(Figures: E. Zubler)

Method

Conclusion

Clouds in climate model

GCM (100 km)

RCM (25 km)

CRM (1 km)

GCM & RCM: Parametrization of convective clouds

- Underestimation of diurnal temperature range, overestimation of clouds, summer convective precipitation poorly represented (e.g. Dai and Trenberth, 2004; Brockhaus et al., 2008)
- CRM: Convection explicitly resolved

(Figures: E. Zubler)

Introduction and motivation	Method	Evaluation	Conclusion
OOO	oo	0000000000000	
Cloud-resolving modelli	ng		

Experience with NWP \rightarrow CRM leads to better forecast (e.g. Mass et al., 2002; Richard et al., 2007)

Introduction and motivation	Method	Evaluation	Conclusion
000	00	0000000000000	
Cloud-resolving modell	ing		

Experience with NWP \rightarrow CRM leads to better forecast (e.g. Mass et al., 2002; Richard et al., 2007)

Climate time scale

- Process studies
 - CRM reproduces a better timing of convective diurnal cycle (e.g. Hohenegger et al., 2008)
 - Physical and numerical convergence of CRM (Langhans et al., 2012)
 - CRM yields negative soil-moisture precipitation feedback (Hohenegger et al., 2009)
- Application to long-term scenario simulations has been very limited

Introduction and motivation	Method oo	Evaluation 0000000000000	Conclusion
Today			

- CRM simulation for the greater Alpine region
 - 10 year long period: 1998-2007
 - driven by ERA-Interim reanalysis

Introduction and motivation	Method	Evaluation	Conclusion
000	oo	0000000000000	
Today			

- CRM simulation for the greater Alpine region
 - 10 year long period: 1998-2007
 - driven by ERA-Interim reanalysis
 - Cost: 2×10^6 CPUh (approx. 6 months wallclock time)

Introduction and motivation	Method	Evaluation	Conclusion
000	oo	0000000000000	
Today			

- CRM simulation for the greater Alpine region
 - 10 year long period: 1998-2007
 - driven by ERA-Interim reanalysis
 - Cost: 2×10^6 CPUh (approx. 6 months wallclock time)

Objectives

- To evaluate the CRM climate simulation against observational datasets and to compare it against coarser climate simulation
- Does the CRM model improve the representation of geographical distribution of precipitation climatology and precipitation statistics (daily/hourly statistics)?
- To investigate whether and how the scaling of precipitation extremes with temperature in CRM model follows the expectations from the Clausius-Clapeyron relation

Introduction and motivation	Method	Evaluation	Conclusion
000	●○	0000000000000	
Setup			

Two step one way nesting: ERA-Interim \Rightarrow CPM \Rightarrow CRM

Introduction and motivation	Method	Evaluation	Conclusion
000	●O	0000000000000	
~			

Two step one way nesting: ERA-Interim \Rightarrow CPM \Rightarrow CRM

CPM

Setup

- 12 km (0.11°)
- Parametrization of convection: Tiedtke
- Spin-up: 5 years
- CRM
 - 2.2 km (0.02°)
 - Convection explicitly resolved
 - Shallow convection: Tiedtke
 - Spin-up: 2 months

Introduction and motivation	Method	Evaluation	Conclusion
000	●○	00000000000000	
Setup			

Two step one way nesting: ERA-Interim \Rightarrow CPM \Rightarrow CRM

- CPM
 - 12 km (0.11°)
 - Parametrization of convection: Tiedtke
 - Spin-up: 5 years
- CRM
 - 2.2 km (0.02°)
 - Convection explicitly resolved
 - Shallow convection: Tiedtke
 - Spin-up: 2 months

Model

COSMO-CLM 4.14

Introduction and motivation	Method	Evaluation	Conclusion
000	○●	0000000000000	
Observations			

EOBS

- Gridded dataset, horizontal resolution 0.25°
- Temperature (version 7.0), Precipitation (version 5.0)

CH (Meteoswiss)

- High resolution (0.01°) gridded precipitation dataset, available over Switzerland
- Based on radar and raingauge data, not corrected for gauge undercatch
- Daily precipitation (1998-2006), Hourly precipitation (2004 - 2007)

ANET7

- 24 Swiss station. 1998-2007
- ► T2M, SW↓, Precipitation

★ T2M \rightarrow Simple height correction applied (0.65 K/100m)

Introduction	and	motivation
000		

Method 00 Evaluation ••••••••

Conclusion

Evaluation

Evaluation

T2M, SEB

Method 00 Evaluation

Conclusion

Temperature

Model vs EOBS

Nikolina Ban : Evaluation of a CRM climate simulation

Method 00 Evaluation

CRM vs CPM

Temperature

Model vs EOBS

Introduction	and	motivation
000		

Method

Evaluation

Conclusion

Diurnal cycle of temperature

Perturbation of a daily temperature:

$$T'=T(\tau)-\overline{T}$$

[Analysis for 24 Swiss station]

T' better presented by CRM

Method

Evaluation

Conclusion

Diurnal cycle of SW \downarrow

[Analysis for 24 Swiss stations]

▶ JJA \rightarrow CRM overestimates SW↓ by up to 100 W m^{-2}

Nikolina Ban : Evaluation of a CRM climate simulation

Method

Evaluation

Conclusion

Surface energy budget

[CRM-solid lines, CPM-dashed lines]

▶ JJA \rightarrow CRM: SHF>LHF \rightarrow dry soil

Nikolina Ban : Evaluation of a CRM climate simulation

Method

Evaluation

Conclusion

Surface energy budget

Shortwave cloud forcing: SWcf = SWn - SWn(clear sky)Longwave cloud forcing: LWcf = LWn - LWn(clear sky)

[CRM-solid lines, CPM-dashed lines]

▶ SWcf(CPM) < SWcf(CRM) \rightarrow less clouds in CRM \rightarrow more SW↓ \rightarrow higher temperature

Introduction and motivation	Method	Evaluation	Conclusion
000	00	000000000000000000000000000000000000000	

Reduced cloud cover (CRM vs. CPM)

 \star Modified PBL scheme in CRM, graupel scheme

 \star Validation of clouds against observations is underway (Michael Keller)

★ Langhans et al., $2012 \rightarrow$ Both models, CPM and CRM overestimate cloud cover (over the Alps)

Introduction	and	motivation
000		

Evaluation

Method 00 Evaluation

Conclusion

Precipitation

Method 00 Evaluation

Conclusion

Mean precipitation

- \blacktriangleright DJF \rightarrow Similar large-scale patterns for both models
- \blacktriangleright JJA \rightarrow Too dry over NW part of domain and too wet over Alps for both models

Method

Evaluation

Conclusion

Diurnal cycle of summer precipitation

 Unlike CPM, CRM gives a much better representation of diurnal cycle

Introduction and motivation 000	Method oo	Evaluation	Conclusio
Mean precipitation as a	function of he	eight	

[The analysis covers only Switzerland]

Introduction and motivation 000	Method 00	Evaluation	Concl
Frequency distribution	of precipitatior	ı (JJA)	

[Analysis for 24 Swiss stations; W&D days (hours)-left, W days (hours)-right column] Nikolina Ban: Evaluation of a CRM climate simulation

Introduction	and	motivation
000		

Method 00 Evaluation

Conclusion

Evaluation

The scaling of precipitation extremes with temperature

Introduction and	d motivation		Method 00	Evaluation	Conclusion
		_			

The scaling of precipitation extremes with temperature

★ 7% increase per °C
★ 14% increase per °C

[Analysis for 24 Swiss stations, JJA]

Introduction and	d motivation		Method 00	Evaluation	Conclusion
		-	 		

The scaling of precipitation extremes with temperature

★ 7% increase per °C
★ 14% increase per °C

[Analysis for 24 Swiss stations, JJA]

Introduction and motivation		Method	Evaluation	Conclusior		
000		00	○○○○○○○○○○○○○			
		_		_		

The scaling of precipitation extremes with temperature

★ 7% increase per °C
★ 14% increase per °C

[Analysis for 24 Swiss stations, JJA]

Introduction	and	motivation
000		

Conclusion and Outlook

- Differences in biases between CPM and CRM are comparatively small, and likely due to differences in cloud forcing
- CRM improves the simulation on sub-daily time-scale (Timing of summer convection)
- CPM has a poor diurnal cycle associated with the use of parametrized convection
- CRM captures extreme precipitation quite well, while CPM underestimate the frequency and intensity of extreme precipitation

Introduction	and	motivation
000		

Method

Conclusion

Conclusion and Outlook

- Differences in biases between CPM and CRM are comparatively small, and likely due to differences in cloud forcing
- CRM improves the simulation on sub-daily time-scale (Timing of summer convection)
- CPM has a poor diurnal cycle associated with the use of parametrized convection
- CRM captures extreme precipitation quite well, while CPM underestimate the frequency and intensity of extreme precipitation

Outlook

The CRM method is applied to scenario simulations

Introduction	and	motivation
000		

Method

Evaluation 000000000000000 Conclusion

Conclusion and Outlook

- Differences in biases between CPM and CRM are comparatively small, and likely due to differences in cloud forcing
- CRM improves the simulation on sub-daily time-scale (Timing of summer convection)
- CPM has a poor diurnal cycle associated with the use of parametrized convection
- CRM captures extreme precipitation quite well, while CPM underestimate the frequency and intensity of extreme precipitation

Outlook

The CRM method is applied to scenario simulations

Thanks!