

Nesting of COSMO and WRF into various global models - a comparitive case study analysis

COSMO-User Seminar 07.03.2013

Sebastian Knist (Prof. A. Bott)

Usual nesting

global model

local model

boundary conditions	
	COSMO
initial values	

Various model nesting

➔ 6 possible combinations

Technical challenges

 Different global model grid structures, data format, parameters, parameter lds, etc.

- Preprocessing:
 - WRF: **WPS** optional for GFS and IFS data, for GME first interpolation on lat-lon grid
 - COSMO: INT2LM optional GME and IFS data, for GFS (GRIB2 format) some additions to the int2lm_1.18 (reading of humidity, interpolation of soil variables)

Lateral boundary conditions

- For real cases: special lateral boundary conditions supplied by coarser model
- Problem: non-unique information transfer between the models at the boundary due to different spatial resolution and model equations, wave reflexion and numerical noise
- **Relaxation zone** at the boundary:

COSMO and WRF use **Davies-type** LBC

 additional lateral forcing term in the progn. equations, which is active only in the relaxation zone:

$$\left(\frac{\partial \psi}{\partial t}\right)_{LB} = -\mu_B(\psi - \psi_B), \qquad \psi^{n+1} = \psi^n - \alpha_B(\psi^n - \psi_B^n), \qquad \alpha_B = \frac{\Delta t \mu_B}{1 + \Delta t \mu_B}$$

Lateral boundary conditions

COSMO relaxation zone

 $\psi^{n+1} = \psi^n - \alpha_B(\psi^n - \psi_B^n)$

Attenuation coeff.:

$$\alpha_{_B}(d) = \exp(-\gamma d/L)$$

Comparison of the 6 model combinations

- Modelling different distinctive synoptic situations
- Qualitative analysis based on characteristic parameters
- How successful is the transformation of the synoptic structure from the lateral boundary to the interior of the local model domain?
- How compatible is the different global model data with each of the local models?
- What differences arise for WRF and COSMO?
- Analysis data: GFS (0.5°, 6h), IFS (0.5°, 6h), GME (~30km, 3h)
- WRF and COSMO same model domain, 200x200x40 GP, 7km resolution, Kain-Fritsch convection, relaxation zone 85km

Archived by www.wetter3.de

5.10.2011 12UTC + 15h

Model comparison

eq. pot. temperature in 850hPa

Effect of linear temporal interpolation at the lateral boundary

- Data of coarse grid available at times every 3 or 6 hours
 - → temporal linear interpolation for every timestep n:

Effect of linear temporal interpolation at the lateral boundary

- Data of coarse grid available at times every 3 or 6 hours
 - → temporal linear interpolation for every timestep n:

5.10.2011 12UTC + 24h

Model comparison

 $\mathsf{GFS} \to \mathsf{WRF}$

IFS \rightarrow WRF

 $\mathsf{GME} \to \mathsf{WRF}$

 $\mathsf{GFS} \ \rightarrow \ \mathsf{COSMO}$

eq. pot. temperature in 850hPa

15.12.2011 12UTC + **24h**

Model comparison

 $\mathsf{GFS} \ \rightarrow \ \mathsf{WRF}$

IFS \rightarrow WRF

 $\mathsf{GME} \to \mathsf{WRF}$

 $GFS \rightarrow COSMO$

 $GME \rightarrow COSMO$

Sea level pressure

15.12.2011 12UTC + 12h

Model comparison

 $\mathsf{GFS} \to \mathsf{WRF}$

IFS \rightarrow WRF

 $\mathsf{GME} \to \mathsf{WRF}$

 $\text{GFS} \ \rightarrow \ \text{COSMO}$

 $\text{IFS} \rightarrow \text{COSMO}$

Precipitation 1h-sum

≤0. (Δ =0.50) ≥7.50
Pr [mm]

15.12.2011 12UTC + 24h

Model comparison

 $\mathsf{GFS} \to \mathsf{WRF}$

IFS \rightarrow WRF

 $\mathsf{GME} \ \rightarrow \ \mathsf{WRF}$

 $\mathsf{GFS} \ \rightarrow \ \mathsf{COSMO}$

 $\text{IFS} \ \rightarrow \ \text{COSMO}$

Precipitation 1h-sum

(Δ =0.50)

∢| ≤0.

Pr [mm]

≥7.50

Conclusions

- Mostly consistent simulation of the synoptic situations with observations in the interior of the local model domain
- Less a coarse spatial interpolation than a coarse temporal interpolation leads to bad manipulation of boundary data
- Similarities for model runs with each the same global model input data
- Differences between COSMO and WRF, especially in precipitation pattern
- Intensive grid scale precipitation in the COSMO relaxation zone, especially with GFS input, probably multiple reasons

Outlook

- Investigation and improvement of the unrealistic intensive precipitation in COSMO relaxation zone
- More tests for other, less distinctive synoptic situations
- Statistical validation of the six different model combinations

Thank you for your attention!

 $\mathsf{GFS} \to \mathsf{COSMO}$

IFS → COSMO

4.6.2011 00UTC + 18h

Model comparison

 $GFS \rightarrow WRF$

IFS \rightarrow WRF

 $GME \rightarrow WRF$

 $\mathsf{GFS} \ \rightarrow \ \mathsf{COSMO}$

IFS \rightarrow COSMO

precipitation 1h-sum

4.6.2011 00UTC + 42h

Model comparison

 $\mathsf{GFS} \to \mathsf{WRF}$

IFS → WRF

 $\mathsf{GME} \ \rightarrow \ \mathsf{WRF}$

 $\mathsf{GFS} \ \rightarrow \ \mathsf{COSMO}$

IFS \rightarrow COSMO

Niederschlag 1h-Summe

3.1.2012 00**+12UTC**

Model comparison

 $\mathsf{GFS} \to \mathsf{WRF}$

IFS \rightarrow WRF

 $\mathsf{GME} \to \mathsf{WRF}$

 $\mathsf{GFS} \ \rightarrow \ \mathsf{COSMO}$

IFS \rightarrow COSMO

precipitation 1h-sum

3.1.2012 00**+12UTC**

Model comparison

 $GFS \rightarrow WRF$

IFS \rightarrow WRF

 $\mathsf{GME} \ \rightarrow \ \mathsf{WRF}$

 $\mathsf{GFS} \ \rightarrow \ \mathsf{COSMO}$

eq. pot. temperature in 850hPa

