

Its way towards operational numerical weather prediction

Günther Zängl, on behalf of the ICON development team COSMO User Seminar, 19.03.2014

Outline

- Introduction: Main goals of the ICON project
- Grid structure, dynamical core and physics parameterizations
- Model applications: from idealized tests to NWP
- Time plan towards operational use

Primary development goals

- Unified modeling system for NWP and climate prediction in order to bundle knowledge and to maximize synergy effects
- Better conservation properties
- Flexible grid nesting in order to replace both GME and COSMO-EU in the operational suite of DWD
- Nonhydrostatic dynamical core for capability of seamless prediction
- Scalability and efficiency on O(10⁴+) cores
- Limited-area mode to achieve a unified modelling system for operational forecasting in the mid-term future

Grid generation is based on the icosahedron

Grid structure in the presence of nesting

Effective grid spacing (distance between points): $\Delta x \approx 5050 / (n 2^k) [km]$

Example:

R2B7: n = 2, k = 7

Grid spacing: 20 km

Global grid consists of 1.3 million spherical triangles.

Regional domain with higher horizontal resolution.

Staggering of variables and structure of nest interface

Triangles are used as primal cells Mass points are in the circumcenter Velocity is defined at the edge midpoints Red cells refer to refined domain Boundary interpolation is needed from parent to child mass points and velocity points

Model equations, dry dynamical core

(see Zängl, G., D. Reinert, P. Ripodas, and M. Baldauf, 2014, QJRMS, revised version submitted)

$$\frac{\partial v_n}{\partial t} + (\zeta + f)v_t + \frac{\partial K}{\partial n} + w \frac{\partial v_n}{\partial z} = -c_{pd}\theta_v \frac{\partial \pi}{\partial n}$$

$$\frac{\partial w}{\partial t} + \vec{v}_h \cdot \nabla w + w \frac{\partial w}{\partial z} = -c_{pd}\theta_v \frac{\partial \pi}{\partial z} - g$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\vec{v}\rho) = 0$$

$$v_n, w: \text{ normal/vertical velocity component}$$

$$\rho: \text{ density}$$

 $\frac{\partial \rho \theta_{v}}{\partial t} + \nabla \cdot (\vec{v} \rho \theta_{v}) = 0$

 θ_v : Virtual potential temperature

- K: horizontal kinetic energy
- ζ : vertical vorticity component
- π : Exner function

blue: independent prognostic variables

Numerical implementation

- Two-time-level predictor-corrector time stepping scheme •
- For thermodynamic variables: Miura 2nd-order upwind scheme for ۲ horizontal and vertical flux reconstruction; 5-point averaged velocity to achieve (nearly) second-order accuracy for divergence
- Horizontally explicit-vertically implicit scheme; larger time steps (default 5x) for tracer advection / physics parameterizations
- Numerical filter: fourth-order divergence damping
- Tracer advection with 2nd-order and 3rd-order accurate finitevolume schemes with optional positive definite or monotonous flux limiters

Implementation of grid nesting

- Basic flow sequence: 1 complete physics time step in parent domain, interpolation of lateral boundary fields/tendencies, 2 complete physics time steps in refined domain, feedback (in the case of two-way nesting)
- Difference between one-way and two-way nesting: feedback is turned off, nudging near the lateral boundaries of the nested domains is activated
- Vertical nesting: boundary condition for nest interface level is provided in addition by parent-to-child interpolation
- One-way and two-way nested domains can be combined
- Nested domains do not have to be contiguous, i.e. a logical nested domain (from a flow-control point of view) can consist of several physical nested domains
- Flow control also allows running the model in limited-area mode

Process	Authors	Scheme	Origin
Radiation	Mlawer et al. (1997) Barker et al. (2002)	RRTM (later with McICA & McSI)	ECHAM6/IFS
	Ritter and Geleyn (1992)	δ two-stream	GME/COSMO
Non-orographic gravity wave drag	Scinocca (2003) Orr, Bechtold et al. (2010)	wave dissipation at critical level	IFS
Sub-grid scale orographic drag	Lott and Miller (1997)	blocking, GWD	IFS
Cloud cover	Doms and Schättler (2004)	sub-grid diagnostic	GME/COSMO
	Köhler et al. (new development)	diagnostic (later prognostic) PDF	ICON
Microphysics	Doms and Schättler (2004) Seifert (2010)	prognostic: water vapor, cloud water,cloud ice, rain and snow	GME/COSMO
Convection	Tiedtke (1989) Bechthold et al. (2008)	mass-flux shallow and deep	IFS
Turbulent transfer	Raschendorfer (2001)	prognostic TKE	COSMO
	Brinkop and Roeckner (1995)	prognostic TKE	ECHAM6/IFS
	Neggers, Köhler, Beljaars (2010)	EDMF-DUALM	IFS
Land	Heise and Schrodin (2002), Helmert, Mironov (2008, lake)	tiled TERRA + FLAKE + multi-layer snow	GME/COSMO
	Raddatz, Knorr	JSBACH	ECHAM6

Related projects

AR

ICON-ART (KIT Karlsruhe): aerosols and reactive trace gases (B. Vogel, H. Vogel, K. Lundgren, D. Rieger, M. Bangert)

HD(CP)² (led by MPI-M, Hamburg):

High-definition clouds and precipitation for advancing climate prediction

(S. Brdar, M. Pondkule, D. Klocke, T. Göcke; T. Jahns, M. Hanke)

ICOMEX (led by DWD):

ICOsahedral-grid models for Exascale Earth-system simulations

(R. Torres, L. Linardakis)

Structure of the ART module

Atmosphere-at-rest test, isothermal atmosphere, limited-area mode, mesh size 300 m

mountain height: 4.0 km / 7.0 km, maximum slope 59° / 71°

Constant wind speed 20 m/s, isothermal atmosphere, limited-area mode, mesh size 300 m

mountain height: 4.0 km / 7.0 km, maximum slope 59° / 71°

0

DCMIP-Test: Idealized tropical cyclone, 12-day-simulation

Horizontal wind speed (m/s)

Left: Global domain, $\Delta x \approx 56$ km; right: 2-Way-Nesting, $\Delta x \approx 56$ km / 28 km

Simulation of "super-typhoon" Haiyan

- Three-domain nested configuration with 10/5/2.5 mesh size, 90/60/54 model levels (4.1M grid points in the 2.5 km domain)
- NWP physics package, convection scheme turned off in 5 and 2.5 km domains
- Initialization from operational IFS analysis on 2013-11-05, 00 UTC, 168hour forecast
- Thanks to Martin Köhler and Bodo Ritter!

Wetter und Klima aus einer Hand

Sea-level pressure (hPa)

Top: 10-km domain

Bottom: 2.5-km domain

Comparison with observed track

10-m wind speed (m/s), 2.5-km domain

DWD

Two-hourly rainfall accumulation (mm)

Top: 10-km domain

Bottom: 2.5-km domain

NWP test suite

- Real-case tests with interpolated IFS analysis data
- 7-day forecasts starting at 00 UTC of each day in January and June 2012
- Model resolution 40 km / 90 levels up to 75 km (no nesting applied in the experiment shown here)
- Reference experiment with GME40L60 with interpolated IFS data
- WMO standard verification on 1.5° lat-lon grid against IFS analyses (thanks to Uli Damrath!)

Parameter: Bodendruck, Gebiet: NH

January 2012

WMO standard verification against IFS analysis: sea-level pressure, NH blue: GME 40 km with IFS analysis, red: ICON 40 km with IFS analysis 180 STDV SKS1 Persistence 5 0.9 6 60 0.6 40 з +0.7 Climate 2 20 20 -0.6È ANOC O. Π.5 144 168 120 0.4 ABSE 0.3 Persistence 0.2 0.1 3 + Climate 0.0 2 2 -0.1 ٩S OERV Exp (CON vs Exp 3840: 26%) 10 -0.2N 11 48 72 144 168 Û 24 48 72 96 120 144 168 48 72 24 96 120 ٥ 24 96 120 144 168 û. Verifikation der Vorhersagen vom 01.06.2012 00UTC bis 30.06.2012 00UTC Experiment ICON, Experiment 3840, Persistenz, Linien: Klir Parameter: Bodendruck, Gebiet: NH

June 2012

WMO standard verification against IFS analysis: 500 hPa geopotential, NH blue: GME 40 km with IFS analysis, red: ICON 40 km with IFS analysis 100 **STDV** SKS1 ****** Persistence 80 0.9 100 40 60 0.6 +40 0.7 Climate 50 20 20 20 0.6Ē ANOC O. 0.5 120 144 168 96 12000 8D ABSE 150 RMSE 10080 Persistence 60 2 80 100 60 4D 60 Ĥ + 4C Climate 40 50 -22D 20 20 Exp ICON vs Exp 3840: 13%0 Ο. o[RV -6 24 48 72 24 48 72 96 120 144 168 24 48 72 96 120 144 168 144 168 Û 0 û 96 120 Verifikation der Vorhersagen vom 01.01.2012 00UTC bis 31.01.2012 00UTC Experiment ICON, Experiment 3840, Persistenz, Linien: Klit Parameter: Geopotential, Gebiet: NH , Druckfläche 0500 hPa January 2012

WMO standard verification against IFS analysis: 500 hPa geopotential, NH blue: GME 40 km with IFS analysis, red: ICON 40 km with IFS analysis 100 80 SKS1 STDV ****** Persistence 80 0.9 80 60 60 60 a.B 60 40 40 + 40 40 0.7 Climate 20 20 20 20 0.6 ANOC la. 0.5 168 120 144 80 100 5D) 80 ABSE RMSE Persistence 80 6 40 60 60 30 60 40 40 + 40 20 2 Climate 20 20 🗶 20 10 Ω BIAS Exp ICON vs Exp 3840: 20%0 o RV 30 P 1 р. 72 96 120 144 168 48 72 24 48 96 120 144 168 24 46 72 ٥ 24 96 120 144 168 û Û Verifikation der Vorhersagen vom 01.06.2012 00UTC bis 30.06.2012 00UTC Experiment ICON, Experiment 3840, Persistenz, Linien: Klit Parameter: Geopotential, Gebiet: NH , Druckfläche 0500 hPa **June 2012**

WMO standard verification against IFS analysis: 850 hPa temperature, NH blue: GME 40 km with IFS analysis, red: ICON 40 km with IFS analysis 100 STDV SKS1 <u>*****</u>** Persistence 0.9 80 80 «***** <u>а.в</u> 60 3 60 Climate + 40 2 0.7 40 20 0.6È 20 ANOC a 0.5 120 144 168 120 0.2 ABSE RMSE Persistence ***** 0.0 -0.2+ Climate 2 -0.4 BIAS 0 RV Exp (CON vs Exp 3840: 30%)0 Ο -0.648 72 96 120 144 168 46 72 96 120 144 168 72 96 120 144 168 û. 24 24 24 48 Û Verifikation der Vorhersagen vom 01.01.2012 00UTC bis 31.01.2012 00UTC Experiment ICON, Experiment 3840, Persistenz, Linien: Klir Parameter: Temperatur, Gebiet: NH , Druckfläche 0850 hPa January 2012

WMO standard verification against IFS analysis: 850 hPa temperature, NH blue: GME 40 km with IFS analysis, red: ICON 40 km with IFS analysis

Kinetic energy spectra

Limited-area experiments with time-dependent boundary conditions

- Developments within HD(CP)² project (Slavko Brdar, Daniel Klocke, Mukund Pondkule)
- a) Coarse-resolution (20 km) limited-area experiment over Europe, comparison against global one-way nested (40-20 km) run
- b) High-resolution (625 m) limited-area experiments over Germany, driven by COSMO-DE analyses, comparison of precipitation / radar reflectivity against observations and COSMO-DE

date = 20130409

Animation of 15-min radar reflectivity

Measurements

COSMO-DE

ICON

20130409, 00:00 20130409, 00 UTC + 0.25 h 20130409, 00 UTC + 0.25 h 202V 9000 9000 5 15 25 35 45 50 radar reflectivity (dBZ)

6

- Mesh size 13 km (R3B07), 90 levels, 1-day forecast (3600 time steps)
- Full NWP physics, asynchronous output (if active) on 42 tasks ۲
- Range: 20–360 nodes Cray XC 30, 20 cores/node, 10 MPI-tasks/node total runtime

Test version of limited-area mode will be provided to **COSMO** partners

Thank you for your attention!

Any questions?