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Uncertainties in ice-affected Synthetic Brightness Temperatures

Member of the
Fabian Senf and Hartwig Deneke —
TRUPOE : .
Leibniz Institute for Tro heric Research, Leipzig, German reehZentrum filr Wetterforschung B —
L S Y "Deutscher Wetterdienst Lok oot K

Introduction

Problems « methodic error in RTTOV (regression method)

* synthetic satellite images used in model verification and data assimilation - for clear sky: said to be balow instrument error
* systematic biases do exist and make quantitative application complicated, for instance for interpolation error

* object-based verification methods * uncerainties due to subgrid-scale parameters

= assimilation of cloudy radiances » water / ice cloud microphysics

* inconsistencies between parameterizations of cloud microphysics and their interaction with radiation connection to radiative properties is

as well as assumptions in retrieval algorithms make interpretation of observation-model differences uncertain, e.g. shape dependence

difficult incongistencies in assumptions on the ice
microphysics between RTTOV and COSMO

Goals .
ice vs. snow problem
* identification of systemalic deficils in a current operalional scheme for derivation of synthetic satellite ~ subgrid cloud cover
image
; +» turbulent fluctuations: to be closer to
* quantification of uncertainties in synthetic satellite images observation?
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Ice-optical Properties in RTTOV

RTTOV Uncertainties in the McFarquhar scheme Simplified ice cloud calculations S

= wvery fast radiative transfer model (long hisfory in * Uncertainty in ice-affected brightness

Spatial Distribution

data assimilation of sat.-radiances) 160 ) temperatures is largest for semi- i T ] T ]
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comparison with parameterization of D, taken from RTTOA.

Simple Predictors of Uncertainty

One example case Many cases
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* inconsistencies between model microphysics and assumptions in the derivation of synthetic
salellite images complicate the comparison of satellite-observed and model clouds

= forecast verification should deal with synSat uncertainties

parameters ke e.g. IWP?

* more consistent treatments of radiation — microphysics — interaction helps to address model deficits esp. for object-based methods?

* uncertainties in synthetic satellite images are non-negligible; espec. for1~0.5-3
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Future Challenges

* How can we estimate the uncertainty in synthetic satellite images based on a few simple forecasled
* How can the estimates of synSat uncertainty be used in data assimilation and forecast verification

* How propagates error from uncertain synthetic satellite images to derived synthetic satellite products?
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