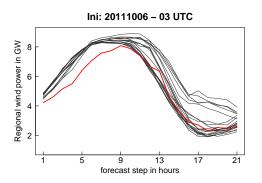
Time-consistent calibration of regional short-term wind power ensemble forecasts based on COSMO-DE EPS

Stephan Späth

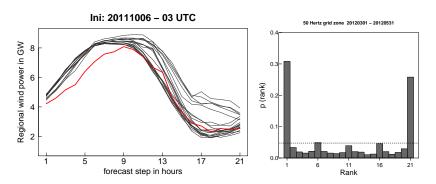
Lueder von Bremen

Constantin Junk

ForWind - Zentrum für Windenergieforschung Carl von Ossietzky Universität Oldenburg, Germany

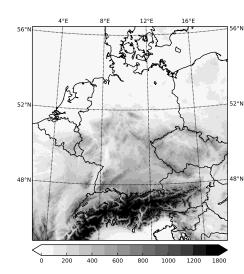

stephan.spaeth@uni-oldenburg.de

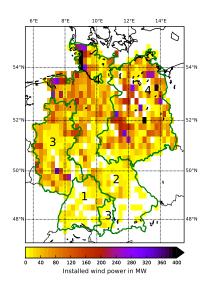
Introduction •000


Ensemble Predictions

ensemble predictions contain systematic errors ⇒ statistical post-processing / calibration

Introduction 0000

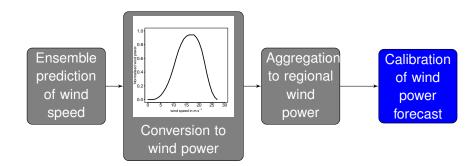

Ensemble Predictions



ensemble predictions contain systematic errors ⇒ statistical post-processing / calibration

COSMO-DE EPS

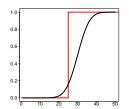
- operational at DWD
- 20 ensemble forecasts. starting at 3 UTC
- Period considered: August 2011 to December 2013
- lead time up to +21 h
- ensemble generated by combining boundary and initial data from four global models with 5 physical parametrisation perturbations



grid zones:

- 2: Tennet
- ▼ 3: Amprion
- 4: 50 Hertz
- ▼ 2+3+4: Germany

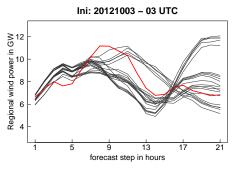
Ensemble Prediction of wind power

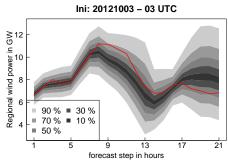


FMOS calibration

Ensemble Model Output Statistics:

- Correction of BIAS and ensemble spread simultaneously
- Minimisation of the crps over a training period:

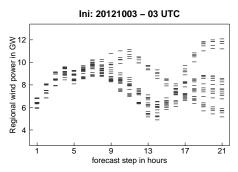

$$\operatorname{crps} = \int_{-\infty}^{\infty} \left[F_{\rho}(x) - \Theta(x - y) \right]^{2} dx \tag{1}$$


Modelling of wind power with truncated Gaussian distribution:

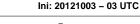
$$\mathcal{N}^0(a+b\overline{x},c+dS^2) \Rightarrow \text{fit of}$$
 parameters a,b,c,d

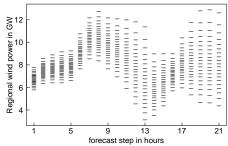
uncalibrated forecast

calibrated forecast

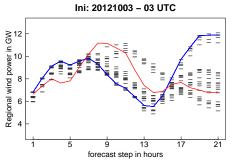


ensemble time trajectories

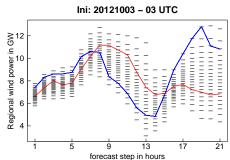

probability distribution forecast


Ensemble Copula Coupling

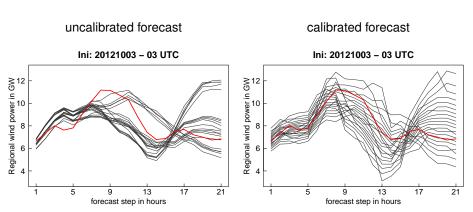
uncalibrated forecast



calibrated forecast



uncalibrated forecast



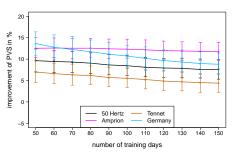
calibrated forecast

One single ensemble member

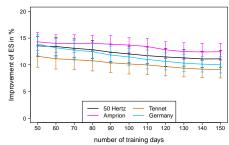
One single ensemble member

⇒ rank order is transferred to calibrated forecast (Ensemble Copula Coupling, Schefzik et al, 2013)

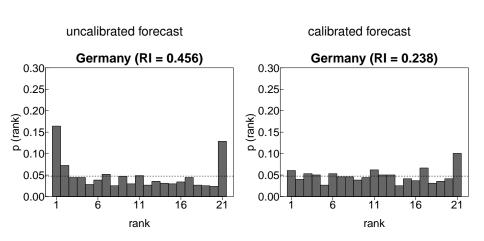
Multivariate verification


- Average rank histograms and reliability index (Thorarinsdottir et al. 2014)
- energy score ES as multivariate generalisation of the crps
- p-variogram Score (Scheuerer and Hamill, 2015)

Forecast improvement is quantified by "Skill Scores":


$$ESS = \left(1 - \frac{ES_{cal}}{ES_{raw}}\right) \cdot 100\% \tag{2}$$

Results •00000


improvement of PVS

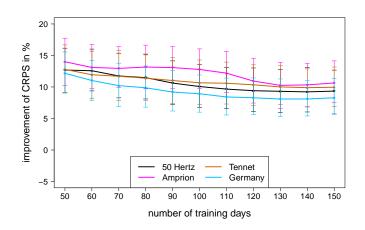
improvement of energy score

Results

Univariate verification

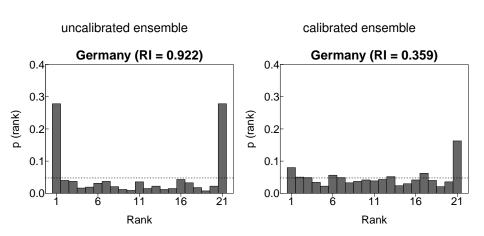
integration of forecast and measurement trajectories

$$X_{l,k} = \int_{t_{l}}^{t_{2}} \hat{x}_{l}^{(k)}(t) dt \quad \forall l \in \{1, 2, ..., m - 1, m\}$$
 (3)


$$Y_k = \int_{t_1}^{t_2} \hat{y}^{(k)}(t) dt , \qquad (4)$$

with $t_1 = 1 \text{ h} \text{ und } t_2 = 21 \text{ h}$

⇒ total produced power during 20 h time frame


Univariate verification

Improvement of CRPS

Results 00000

Univariate verification

Conclusion

- operational forecasts used for wind power forecasts
- strong improvement possible by calibration
- information on temporal evolvement can be maintained in calibrated forecasts
- variants of ensemble copula coupling for correlated ensemble members have to be developed

Späth et al., 2015: Time-consistent calibration of short-term regional wind power ensemble forecasts, under review at Meteorologische Zeitschrift

Literatur

Schefzik, R., T. L. Thorarinsdottir, T. Gneiting, 2013: Uncertainty quantification in complex simulation models using ensemble copula coupling. Statist. Sci. 28(4), 616-640

Scheuerer, M., T. Hamill, 2015: Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities., submitted to Mon. Wea. Rev.

Thorarinsdottir, T. L., T. Gneiting, 2010: Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression. J. Roy. Statist. Soc. Ser. A, **173**, 371–388

Thorarinsdottir, T. L., M. Scheuerer, C. Heinz, 2014: Assessing the calibration of high-dimensional ensemble forecasts using rank histograms. J. Comp. Graph. Statist.