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Features of midlatitude cyclones 
•  Midlatitude cyclones are often associated with weather extremes like 

wind, precipitation, and floodings 
•  Adiabatic energy source: baroclinic instability [1] 
•  Diabatic energy source: latent heating (LH) during cloud formation à 

can have a significant contribution to cyclone intensification [2,3,4,5,6] 
 

Motivation: Global warming à higher atmospheric moisture content 
à more LH à effect on midlatitude cyclone intensity and tracks? 
 

Potential vorticity (PV) 
•  Key variable for investigation of cyclone dynamics [7]: 

 

•  Conserved under adiabatic conditions but can be changed through 
frictional and diabatic processes: 

 
 

•  PV distribution in midlatitude cyclones [3,8,9]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
•  Simulation of the historical European winter storm Klaus in 2009 [10] 
•  COSMO model setup: 

•  North Atlantic / European domain 
•  Spatial resolution: 0.125° x 0.125° (horizontal), 40 levels (vertical) 
•  Initial and boundary conditions from ECMWF analysis 

•  Sensitivity simulations: scale specific latent heat constants in the 
model (lh_v, lh_f, lh_s) with a constant α 
•  Reference (REF): α = 1.0 
•  Reduced / enhanced LH (L05, L15): α = 0.5, α = 1.5 
•  No LH (L00): α = 0.0 

•  Analyze 6h-heating-rates due to microphysics (TMPHYS) and 
convection (TCONV) 

•  Cyclone area definition: 
•  Radius of 200 km around SLP minimum (for PV budget) 
•  Rectangular box including SLP minima at times t0 and t-6 (for heating 

rate budgets) 

Q =
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Results 
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Conclusions & Outlook 
•  The dynamic contribution of LH was significant during the explosive 

intensification of Klaus 
•  Both the diabatically produced positive low-tropospheric and negative 

upper-tropospheric PV anomalies of Klaus scale approximately linearly 
with intensified LH 

•  With more intense LH, the track of Klaus shifts slightly southward 
during the intensification phase 

•  The vertical PV distribution is a good diagnostic metric to investigate 
the effect of different LH conditions on the intensity and dynamics of 
midlatitude cyclones 

•  The result of this study motivates to use the PV budget to further 
investigate the LH sensitivity of midlatitude cyclones both on a case-to-
case and climatological basis 

Data & Method 

Figure: Tracks (top) and development of minimum SLP (bottom) for the four 
sensitivity simulations (REF, L00, L05, L15) 

Positive upper-level PV anomaly 
(adiabatic, from tropopause) 

Positive low-level PV anomaly 
(diabatic, from LH) 

Positive surface potential 
temperature anomaly 

Negative upper-level 
PV anomaly 

(diabatic, from LH) 
Composite PV anomaly profiles of 1367 

intense Northern Hemisphere winter 
cyclones from ERA-Interim [9] 
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PV @ 850 hPa, SLP PV @ 310 K, SLP Vertical distribution of THMPHYS + TCONV 
(over rectangular box) 

Diabatically produced 
low-tropospheric PV 
anomaly along fronts 

Strongest PV anomaly 
with strongest LH 

Adiabatically produced 
upper-tropospheric PV 

anomaly (descent of 
tropopause) 

Strongest diabatic PV 
destruction at upper levels 

with strongest LH (structure of 
warm conveyor belt outflow) 

Very weak cyclone 
without LH 

Cyclone area examples 
(radius and box) 

Adiabatically produced 
upper-tropospheric PV 

anomaly (descent of 
tropopause) 

Strongest diabatic PV 
destruction at upper levels 

with strongest LH (structure of 
warm conveyor belt outflow) 

Strongest diabatic PV 
production below heating 

maximum à generated PV is 
lifted upwards 

Vertical distribution of PV 
(over radius of 200 km) 

• One of the most 
damaging storms for 
Northern Iberia and 
Southern France with 
extreme winds and 
heavy precipitation 
[10] 

•  Explosive deepening 
after crossing a 
region of strong 
upper-level 
divergence (left exit 
region of jet streak) 
[10] 

•  LH strongly 
contributed to the 
intensification [11] 


