Wind farms in the North Sea

Fabien Chatterjee, Dries Allaerts, Nicole v. Lipzig, Johan Meyers

March 2, 2015

- Strong Expansion in windfarm deployment: 40 GW by 2020
- Changes in local climatology at North Sea coasts
- Wind Farm representation in climate models not fully understood
- difficulty of wind farm measurements

- LES to validate wind farm parameterisation
- Wind farm parameterisation
- COSMO-CLM model specifics
- Description of experiments and results
- Outlook
- Conclusions

LES to evaluate COSMO-CLM

Velocity Magnitude (zplane)

Velocity Magnitude (zplane)

- Reynolds Averaged Navier Stokes equation
- 1.5 Order Closure for Turbulent Kinetic Energy
- Dry, neutral stratification, periodic lateral boundary condition
- Surface boundary: Bulk transfer scheme based on Monin-Obukhov
- Top boundary: Zero stress

- Pressure gradient force balanced by surface friction
- Height 1000m, 10 layers
- No wind Farm Wind Farm increase C_T
- Compare with LES, Wind Farm LES, staggered wind farm LES

- Pressure gradient force balanced by surface friction and Coriolis
- Height 5000m, 16 layers
- No wind Farm Wind Farm increase, decrease C_T
- Compare with LES, Wind Farm LES, staggered wind farm LES

No Coriolis: No Farm

э

・ 同 ト ・ ヨ ト ・ ヨ ト

No Coriolis:Wind Farm

mean absolute bias u: 13 %

No Coriolis: increase thrust coefficient

Coriolis case: No Farm

э

3

-

Coriolis case: Wind Farm

mean absolute bias 12%

Coriolis case: Changes in Thrust Coefficient

Coriolis case Rotor height: Changes in Thrust Coefficient

Future Work: Climate simulations

- CCLM nested with Euro-CORDEX 11km - 1.5 km
- Shadowing effects
- Geostrophic flow above ekman layer
- Hydrological cycle

- COSMO-CLM is able to reproduce an LES flow with and without Coriolis
- \bullet Wind farm Parameterisation reproduces flow with 12 % and 13 % error.
- Increasing C_T improves no Coriolis case
- decreasing C_T improves the Coriolis case