

DEPARTMENT OF EARTH AND **ENVIRONMENTAL SCIENCES KU Leuven - BELGIUM**

Precipitation variability over the East African region and its relation with circulation patterns

N. Souverijns¹, W. Thiery¹, M. Demuzere¹, N.P.M. van Lipzig¹

¹ EES, University of Leuven, Belgium, <u>niels.souverijns@student.kuleuven.be</u>

Figure 1. Study area weighed normalised PDSI index (data: KNMI)

 High interannual precipitation variability poses severe risks for population and food security

Figure 2. Live Aid *Concert 1985*

Figure 3. Study area

• 1981-2010

- ERA Interim data
- Relate Mean Sea Level Pressure to:
 - Total Precipitation
 - Large-Scale Precipitation
 - Convective Precipitation

3. COST733Class

Figure 4. Separability analysis regarding Mean Sea Level Pressure

- Classify Mean Sea Level **Pressure in different patterns**
- Evaluate different classification algorithms with different separability measures
- Separating pressure patterns is considered most important
- Neural-network classifications perform best in separating pressure patterns

Figure 5. Separability analysis regarding precipitation

4. Weather Atlas

							1		
Month	C1	C2	C3	C4	C5	C6	C7	C8	C9
January	0	45.7	0	4.6	0	8.1	0	41.6	0
February	0	42.7	0.1	9.2	0	24.3	0	23.7	0
March	0	20.6	5.4	18.2	0.1	45.5	0	10.2	0
April	0	2.6	52.5	11.2	2.6	28.8	0	2.3	0
May	5.4	0	52.4	1.0	14.4	2.8	3.0	0	21.0
June	7.0	0	2.2	0	0.7	0	33.4	0	56.7
July	2.5	0	0	0	0.1	0	56.8	0	40.6
August	14.7	0	0	0	4.3	0	47.2	0	33.8
September	48.6	0	0.4	1.4	32.8	0.1	7.8	0	8.9
October	9.1	0	1.7	49	35.3	3.3	0	1.6	0
November	0	9.4	0.6	51.4	3.2	10.3	0	25.1	0
									-

- 5. (Near-) future results
- Classify pressure patterns of COSMO-CLM present (1989-2010) and future (2081-**2100) simulations**
- RCP8.5 scenario
- Relate changes in precipitation and PDSI (variability) to changes in circulation

December 0 36.4 0 13.3 0 6.3 0 44.0 0

Figure 7. Occurrence of different circulation types per month in the period 1981-2010

- Distinct seasonal patterns are visible
- Precipitation patterns are clearly related to circulation
- Droughts / wet spells are mostly related to differences in interannual frequency of circulation patterns

patterns

- Changes in circulation pattern frequency and the patterns itself
- Relate circulation pattern occurrence to El Niño / La Nina events
- Possible relation with dry / wet periods
- Clear correlation between Nino3.4 index and precipitation observations in the long rain season (October, November, December).
- Possible lagged relation in the short rain season (March, April, May)

Figure 8. Nino 3.4 index (data: KNMI)

Figure 9. Correlation between Nino 3.4 and precipitation (CRU) for Oct, Nov and Dec (data: KNMI)