Impact of Higher Order Quadratic Conserving Advection Scheme in the COSMO model on Regional climate Simulation

Jack Ogaja & Andreas Will

Brandenburg University of Technology Cottbus

03 February, 2015

Outline

- Introduction
 - Quadratic conserving scheme in the COSMO model
- Regional Climate Simulation
 - Results
- Conclusions

INTRODUCTION:

Higher order quadratic conserving scheme in COSMO model Horizontal Advection of u: $u\frac{\partial u}{\partial \lambda} + v\frac{\partial u}{\partial \phi}$ divergence form: conservative a priori

$$S4^* := \frac{9}{8}\overline{u}^{O4,\lambda}\delta_{\lambda}u^{\lambda} - \frac{1}{8}\overline{u}^{O4,\lambda}\delta_{3\lambda}u^{3\lambda} + \frac{9}{8}\overline{v}^{O4,\phi}\delta_{\phi}u^{\lambda} - \frac{1}{8}\overline{v}^{O4,\phi}\delta_{3\phi}u^{3\lambda}$$

$$= \underbrace{\left[\frac{9}{8}\delta_{\lambda}(\overline{u}^{O4,\lambda}\overline{u}^{\lambda}) - \frac{1}{8}\delta_{3\lambda}(\overline{u}^{O4,\lambda}\overline{u}^{3\lambda})\right]}_{= \underbrace{\left[\frac{9}{8}\delta_{\phi}(\overline{v}^{O4,\phi}\overline{u}^{\lambda}) - \frac{1}{8}\delta_{3\phi}(\overline{v}^{O4,\phi}\overline{u}^{3\lambda})\right]}_{\equiv \frac{\mathbf{F}_{i+n/2} - \mathbf{F}_{i-n/2}}{\mathbf{n}\delta\phi}} - \overline{v}^{O4,\phi}\delta_{\phi}(\overline{u}^{O4,\phi})$$

*: Morinishi,1998(JCP), 'Higher order conservative schemes'

Advantages:

- Higher Order accurate
- Improved model stability due to conservation of the integrated Kinetic energy for non-divergent flows

Motivation: Higher Order Quadratic Conserving Spatial Schemes - Conserves 1st and 2nd momments of the advected quantity i.e. kinetic energy

Jack Ogaja & Andreas Will (BTU) Quadratic Conserving Schemes & Climate Simulations

REGIONAL CLIMATE SIMULATION:

Configuration

- COSMO-CLM evaluation domain for EU/Euro CORDEX
- ERA-interim 1979-1998
- $\blacktriangleright \Delta \lambda = 0.165^{\circ}$
- ke_tot(model levels) = 40
- Parameterization schemes
 - Prognostic TKE turbulence closure scheme -level 2.5 (Mellor and Yamada (1982))
 - Tiedtke mass-flux convection scheme (Tiedke (1989))

Simulation-ID:	Configuration-ID:	hor.dif.[]	dt [s]	simulated time [y]
RTC002	C3p2v2d0.25	0.25	150	79-98
RTC004	N4p4v2d0.25			
RTC016	S4p4v2d0.25			
RTC012	<i>S</i> 4 <i>p</i> 4 <i>v</i> 2 <i>d</i> 0.00	0.00		

Summer mean Kinetic Energy from Divergent wind (m^2s^{-2})

Summer mean Kinetic Energy from Rotational wind (m^2s^{-2})

Jack Ogaja & Andreas Will (BTU) Quadratic Conserving Schemes & Climate Simulations

Precipitation, 2m Air temperature and uv_10m maximum

- Differences between observations and simulations
- Relative differences between simulations using different spatial schemes

The difference in maximum 10m wind speed (S4p4v2d0.00-C3p2v2d0.25)

DIFF: Maximum 10m Windspeed RIC012-RIC002, 1988-198807

- Significant increase in 10m wind speed

TOT_PREC July 1979-1988 differences *C3p2v2d*0.25 – *ECAD* 54p4v2

S4p4v2d0.00 - ECAD

DIFF: Precipitation RTC002-ECAD48, 1983-1983, 08, 00_24

Power spectra of precipitation(SUMMER)

Summer Maximum updraft (m/s)

T 2M evaluation: July 1979-1988 differences C3p2v2d0.25 - ECAD S4p4v2d0.00 - ECAD

DIFF: 2m Temperature RTC002-ECAD48, 1983-1983, 08, 00_24

Absolute air temperature: Relative differences

Height-lon cross section: T(Temperature) and PP(Pressure deviation) Relative differences S4p4v2d0.00(RTC012)-C3p2v2d0.25(RTC002)

Jack Ogaja & Andreas Will (BTU)

Quadratic Conserving Schemes & Climate Simulations

03 February, 2015

Diurnal cycle for Conv. Precipitation and PBL Height

Conclusions

- Quadratic conserving Fourth order advection scheme S4p4v2d0.00(RTC012) is as stable as the third order upwind scheme C3p2v2d0.25 (with potential for longer time steps) and with higher effective resolution ($\approx 5\Delta\lambda$) compared to the third order upwind scheme ($\approx 8\Delta\lambda$).
- The increased effective resolution changes the regional climate significantly, particular in summer.
 - intensifies small scale turbulence, increases the height of the planetary boundary layer and reduces the convective precipitation in summer months.
 - The reduced precipitation in summer results to reduced soil moisture content and an increase in the summer 2m air temperature(T_2M) positive bias.