
Adapting COSMO for GPU accelerators:

Learnings and consequences for model developers

 S. Ruedisuehli1, X. Lapillonne1, O. Fuhrer2

1Center for Climate Systems Modeling (C2SM), ETH Zürich, 2Federal Office of Meteorology and climatology MeteoSwiss, Zürich

Code changes I: Major restructurings

Working arrays

• Fortran automatic arrays always result in a costly memory

allocation since there is no stack on GPUs.

• Most efficiently, all GPU arrays are allocated/deallocated only

once before/after the timeloop.

• Thus all local working arrays of subroutines are moved to the

parent module, and allocate/deallocate subroutines are added.

• To utility subroutines, working arrays are passed as arguments.

Block physics

• It is not strictly GPU-related, but implemented simultaneously.

• The i and j dimensions are merged into one, made possible by

the lack of lateral dependencies in the physics.

• Data is copied to/from block before/after the physics, and all

data fields are passed as argument to the parameterizations.

stefan.ruedisuehli@env.ethz.ch

OpenACC

• Open standard to run Fortran or C code on GPU accelerators

by adding directives to the code, which are simply ignored as

comments if the code is compiled for CPU (like OpenMP).

Advantages

• Existing code remains mostly unchanged and shared with CPU.

• Easy to learn and to port (simple) codes with.

Disadvantages

• Array data in GPU memory has to be managed manually

(copied back and forth) to avoid unnecessary data transfers.

• Hard to achieve performance portability.

Overview

• In the COSMO POMPA1 project a COSMO version leveraging

GPU accelerators is developed.

• GPUs can provide significantly larger performance (typically

factor 3x to 5x) compared to traditional CPUs while consuming

a similar amount of energy.

• The GPU-port follows a two-fold approach:

• The dynamical core has been re-written from scratch

(C++/DSL “STELLA”).

• The rest of the Fortran code has been retained, but

refactored and expanded with OpenACC directives.

• The focus of this poster is on Fortran (mainly the physics):

• How do we port the Fortran code to GPU?

• What changes will be introduced into COSMO?

• What tools/approaches do we use for development?

Code changes II: Local optimizations

• Any GPU optimizations are constrained by the CPU performance

of the code, which must not be degraded.

• The goal is to have as much shared source code as possible.

• Where absolutely necessary (most compute-intensive parts),

special code is introduced for GPU. The most extreme case are

the inversion routines inv_th/so in the radiation (see graph).

• On CPU, efficient kernels2 are rather small and of low complexity

so they can be vectorized by the compiler.

• On GPU, it is usually more efficient for kernels to do a lot of

computational work.

 2kernel: body of a loop (refers to loop constructs here)

Testing

COSMO Testsuite

• Short runs on reduced

domain in many different

configurations.

• Fast: <20 min for >20 tests

• Almost immediate technical

validation of small changes.

• Thresholds can be set for

certain time spans and

variables to account for

expected differences.

• Simple, modular framework

makes it easy to add new

tests or checkers.

Physics standalone

• Framework to work on physical parameterizations

in isolation from the rest of the model.

• Necessary data fields are written to disk before and

after the parameterization in a full model run.

• This data is used for initialization of the standalone

and validation of it’s output.

Advantages

• Extremely fast testing/benchmarking.

• Helps increasing modularity (or illustrating the lack thereof).

Disadvantages

• Additional work to set it up (find all dependencies).

• So far only single timestep in one configuration.

Jenkins

• Fully-automized testing (on request and nightly)

of compilation, testsuite, etc.

• Tests on all machines; with different compilers;

on CPU and GPU; and in float and double.

Speedup with respect to reference CPU implementation for the inv_th routine in the

radiation. Comparing GPU and CPU execution time for different optimization

implementation.

PROGRAM cosmo
 timeloop: DO t=1,nt
 CALL physics

MODULE m_physics

 SUBROUTINE physics
 CALL radiation
 CALL turbulence

 SUBROUTINE radiation
 REAL :: rad1(nx,ny)
 INTEGER :: rad_i
 !$acc data create(rad1)

 SUBROUTINE turbulence
 REAL :: tur1(nx,ny)
 LOGICAL :: turb_l

 !$acc data create(tur1)

PROGRAM cosmo
 CALL physics_wk_alloc
 timeloop: DO t=1,nt
 CALL physics

MODULE m_physics
 REAL,ALLOCATABLE :: &
 rad1(:,:), tur1(:,:)

 SUBROUTINE physics
 CALL radiation
 CALL turbulence

 SUBROUTINE radiation
 INTEGER :: i_rad
 !$acc data present(rad1)

 SUBROUTINE turbulence
 LOGICAL :: l_tur
 !$acc data present(tur1)

 SUBROUTINE physics_wk_alloc
 ALLOCATE(rad1(ie,je))
 ALLOCATE(tur1(ie,je))
 !$acc data create(rad1)
 !$acc data create(tur1)

PROGRAM cosmo_lowmem
 timeloop: DO t=1,nt
 CALL physics_wk_alloc
 CALL physics
...

Working array-restructuring: An idealized example

 1Performance on Massively Parallel Architectures

PROGRAM sample_openacc
USE mod, ONLY: ie,je,fact,init
 IMPLICIT NONE
 REAL :: arr1(ie,je), arr2(ie,je)
 !$acc data create (arr1,arr2,fact) ! start data region
 !$acc update device (fact) ! copy fact to GPU
 CALL init (arr1, lacc=.TRUE.) ! init. arr1 on GPU
 CALL comp_gpu (arr1, fact, arr2) ! compute arr2 on GPU
 !$acc update host (arr2) ! copy arr2 to CPU
 !$acc end data ! end data region
 PRINT*, MINVAL(arr2),MAXVAL(arr2) ! print arr2 on CPU
CONTAINS
SUBROUTINE comp_gpu(arr)
 REAL, INTENT(IN) :: arr1, fact
 REAL, INTENT(OUT) :: arr2
 INTEGER :: i,j
 !$acc parallel present (arr1,fact,arr2) ! start parallel region
 !$acc loop gang ! parallelization detail
 DO j=1,je
 !$acc loop vector ! parallelization detail
 DO i=1,ie
 arr2(i,j) = arr1(i,j) * fact(i,j) ! compute arr2 on GPU
 ENDDO
 ENDDO
 !$acc end parallel ! end parallel region
END SUBROUTINE comp_gpu
END PROGRAM sample_openacc

• The increased work load makes the fused

kernel more efficient on GPU, with scalarization

providing an additional benefit.

• The fused kernel doesn’t vectorize on CPU

because it is too complex, which outweighs the

benefit from scalarization.

DO j=1,je
 DO i=1,ie
 tmp1(i,j) = f3_in1(i,j,1) * f2_in1(i,j)
 ENDDO
ENDDO

DO j=1,je
 DO i=1,ie
 tmp2(i,j) = tmp1(i,j) * f2_in2(i,j)**2
 ENDDO
ENDDO

!XL: too complex to vectorize
CALL compute_complex(f3_in2(:,:,:), tmp3(:,:,:))

DO k=1,ke
 DO j=1,je
 DO i=1,ie
 f3_out(i,j,k) = 0.5*(tmp1(i,j,k) + tmp3(i,j,k))
 ENDDO
 ENDDO
ENDDO

CPU

3D 2D 1D

!$acc parallel
!$acc loop gang
DO j=1,je
 !$acc loop vector
 DO i=1,ie
 tmp1 = f3_in1(i,j,1) * f2_in1(i,j)
 tmp2 = tmp1 * f2_in2(i,j)**2
 DO k=1,ke
 !RUS: must be inlined
 CALL compute_complex_scalar(f3_in2(i,j,k), tmp3)
 f3_out(i,j,k) = 0.5*(tmp1 + tmp3)
 ENDDO
 ENDDO
ENDDO
!$acc end parallel

GPU

3D 2D 1D

Restructuring for GPU: A simiplyfied example

Note that in this simplyfied case, the fused kernel might

nevertheless be vectorized and run faster on CPU. In reality,

the original code would be many times longer and the fused

kernel correspondingly more complex.

