Adapting COSMO for GPU accelerators:
Learnings and consequences for model developers

S. Ruedisuehli!, X. Lapillonne?, O. Fuhrer?

)

\ & CsM 1Center for Climate Systems Modeling (C2SM), ETH Ziirich, 2Federal Office of Meteorology and climatology MeteoSwiss, Ziirich
\ ' Center for Climate
ystems Modeling stefan.ruedisuehli@env.ethz.ch
Overview Code changes I: Major restructurings
In the COSMO POMPA! project a COSMO version leveraging Working arrays Working array-restructuring: An idealized example
GPU accelerators is developed. _ _ PROGRAM cosmo PROGRAM cosmo
« Fortran automatic arrays always result in a costly memory timeloop: DO t=1,nt CALL physics_wk_alloc
GPUs can provide significantly larger performance (typically allocation since there is no stack on GPUs. L lleaps 30 otk
- . . S1CS
factor 3x to 5x) compared to traditional CPUs while consuming o MODULE m_physics o
a similar amount of energy. * Most efiiciently, all GPU arrays are allocated/deallocated only | MODULE m_physics
once before/after the timeloop. S Sl et %)
The GPU-port follows a two-fold approach: _ _ N T o
« Thus all local working arrays of subroutines are moved to the SUBROUTINE physics
* The dynamical core has been re-written from scratch parent module, and allocate/deallocate subroutines are added. SUBROUTINE radiation CALL radiation
(C++/DSL “STELLA”). N | | EE?EGEF.{ ra :a(]zxiny) CALL turbulence
| « To utility subroutines, working arrays are passed as arguments. e GREE G e SUBROUTINE radiation
« The rest of the Fortran code has been retained, but INTEGER :: i_rad
refactored and expanded with OpenACC directives. L e oenes RS GO [IHSTANRUELY
_ .]] B k Dhvsi LOGICAL :: turb_1 SUBROUTINE turbulence
The focus of this poster is on Fortran (mainly the physics): OCK physICS I$acc data create(turl) LOGICAL :: 1_tur
_ _ _ _ I$acc data present(turl)
. How do we port the Fortran code to GPU? * Itis not strictly GPU-related, but implemented simultaneously. — SUBROUTINE physics wk alloc
. . . . - i - i - timeloop: DO t=1,nt ALLOCATE(rad1(ie, je))
. What changes will be introduced into COSMO? The 1and | dmensions are merged into one, made possible by i e B A P
the lack of lateral dependencies in the physics. CALL physics I$acc data create(radl)
* What tools/approaches do we use for development? _ _ _ JOEEE CRl) EnERldR((i)
« Data is copied to/from block before/after the physics, and all
. . . data fields are passed as argument to the parameterizations.
Performance on Massively Parallel Architectures
OpenACC Code Changes II" Local optimizations Restructuring for GPU: A simiplyfied example
DO j=1,je CPU
DO i=1,ie
» Open standard to run Fortran or C code on GPU accelerators * Any GPU optimizations are constrained by the CPU performance oot S SrEe oot LA
by adding directives to the code, which are simply ignored as of the code, which must not be degraded. ENDDO
comments if the code is compiled for CPU (like OpenMP). . . .
P (P) » The goal is to have as much shared source code as possible. DO j=1,je
PROGRAM sample_openacc _ _ Dot;;;ziej) _ tmpl(i,d) * f2_in2(i,)**2
USE mod, ONLY: ie,je,fact,init * Where absolutely necessary (most compute-intensive parts), ENDDO. ’ -
ESZECIT NOTE, - s special code is introduced for GPU. The most extreme case are ENDDO
:: arrl(ie,je), arr2(ie,je : : : : : .
I$acc data create (arrl,arr2,fact) I start data region the inversion routines mv_th/so in the radiation (See graph)' IXL: too complex to vectorize
I$acc update device (fact) I copy fact to GPU o _ CALL compute_complex(3 in2(:,:,:), tmp3(:,:,:))
CALL init (arrl, lacc=.TRUE.) | init. arrl on GPU « On CPU, efficient kernels? are rather small and of low complexity
CALL comp_gpu (arri, fact, arr2) | compute arr2 on GPU so they can be vectorized by the compiler. P0 ek,
I$acc update host (arr2) I copy arr2 to CPU D(J)_i;:JLeie
!$acc end data ! end data region « On GPU, it is usually more efficient for kernels to do a lot of £3_out(i,q,k) = 0.5%(tmpl(i,j,k) + tmp3(i,j,k))
PRINT*, MINVAL(arr2),MAXVAL(arr2) | print arr2 on CPU tat | ‘ ENDDO
TR computational work. ENDDG
SUBROUTINE comp_gpu(arr) ENDDO 3D 2D 1D

2 .
REAL, INTENT(IN) :: arrl, fact kernel: body of a loop (refers to loop constructs here)

REAL, INTENT(OUT) :: arr2 * The Iincreased work load makes the fused

INTEGER :: 1i,7 . . .
I$acc parallel present (arrl,fact,arr2) ! start parallel region kernel more efficient on GPU, with scalarization

I$acc loop gang | parallelization detail 3.5 GPU GPU —— providing an additional benefit.
DO j=1,je
I$acc loop vector I parallelization detail 3 « The fused kernel doesn’t vectorize on CPU
b0 1=1,1e . . because it is too complex, which outweighs the
arr2(i,j) = arrl(i,j) * fact(i,j) I compute arr2 on GPU . : :
ENDDO 2.5 benefit from scalarization.
ENDDO |
I$acc end parallel | end parallel region .: 2 Ii:gg ?22"“113 GPU
END SUBROUTINE comp_gpu - 7 s jep HEE
END PROGRAM sample_openacc = 15 I$acc loop vector
DO i=1,ie
tmpl = f3_inl1(i,j,1) * f2_inl(i,j)
Advantages 1 tmp2 = tmpl * f2_in2(i,j)**2
.. . . DO k=1, ke
« EXxisting code remains mostly unchanged and shared with CPU. 0.5 IRUS: must be inlined
CALL compute_complex_scalar(f3_in2(i,j,k), tmp3)
« Easy to learn and to port (simple) codes with. 0 ENSSBOUt(l’J’k) = BoBH(AT & i)
, CPU opt (re GPU opt Scalar Function ENDDO
Disadvantages pt {ref) P ENDDO
_ Speedup with respect to reference CPU implementation for the inv_th routine in the !$acc end parallel 3D 2D 1D
« Array data in GPU memory has to be managed manually radiation. Comparing GPU and CPU execution time for different optimization E— _ _
ied back and forth) t id data t f implementation. Note that in this simplyfied case, the fused kernel might
(COpIe ack and for) O avold unnecessary data transters. nevertheless be vectorized and run faster on CPU. In reality,
_ . the original code would be many times longer and the fused
¢ Hard tO aChIeve perfOrmanCe pOrtablllty kernel Corresponding|y more Comp|ex_
Testing Physics standalone Advantages
T comotes 1 only dpnic « Extremely fast testing/benchmarking.
run_success_checlk.py
" MATCH] existence_grib_out.sh _ - ° l I l]]]]]
COSMO TeStSL“te e tuggécifzﬂﬁ.;:rﬁhﬂds to enforce bit-reproducibility Framework to Work on phySICaI parameterlzatlons ° Helps IncreaS|ng modularlty (Or Illustratlng the Iack thereof)
D e SR ey In iIsolation from the rest of the model.
ShOrt runS On reduced] TEST cu;:ﬂ?’tesiif flyn;m{cs?;islgﬁysics
. . . MATCH 1 run_success check, . . .
domain in many different MaTCH | E“;‘;gﬂgagggaﬂg;Eghﬂds o entorce bit-reoroducibitity * Necessary data fields are written to disk before and
configurations. MATCH i output toTerance theck py . after the parameterization in a full model run. Disadvantages
RESULT cosmo7/test 2: Dynamics and physics
| TEST cosmo7/test 3: Dynamics, physics and assimilation
Fast: <20 min for >20 tests 1 wor J smagivas - This data is used for initialization of the standalone - Additional work to set it up (find all dependencies).
space/scrateh/russ oo O eown i e e st enmaer e and validation of it's output.

So far only single timestep in one configuration.

STANDALONE

RADIATION

Almost immediate technical sbsolute error:

nt max all t Test
. . 0 0. 00e+00 0. 00e+00 oK
validation of small changes.) L0 6l4e02 FAILED
2 4,77e+00 1.22e-01 FAILED

3 9, 5Be+00 1.82e-01 FAILED
10 7. 32e4+00 5. 00e-01 FAILED

Thresholds can be set for T T R

. . 30 7. 23e+00 8.54e-01 FAILED

40 6, 38e+00 7. 46e-01 FATLED

Certaln tlme Spans and =0 5. B5e+00 8, 80e-01 FAILED
60 5, 22e+00 8.10e-01 FAILED

variables to account for 70 S.0les00 8.32e-01 FAILED

. 20 5, 72400 1. 36400 FAILED
Qg 2. 17e4+00 1. 23400 FATLED
expected differences.

110 1.56e+01 8.2%e-01 FAILED

organize_physics

. 120 1.72e4+01 8.61e-01 FAILED ‘ ‘ | ‘
Slmple, mOdUIar framework] tuéirﬁz:C:Eg:EcﬁHggﬁhulg:1322 , max diff 4,83153Be+l3 at
. Errors above thresho g _ o o
makes it easy to add new T PRECIPITATION RADIATION TURBULENCE
teStS Or CheCkerS. [FAIL] uutpE:i:ﬁrancefgheiE.p;r e aseers T ’

[MATCH] data_assimilation_check.rb '
[FAIL] RESULT cosmo7/test_3: Dynamics, physics and assimilation
‘ P>
S|

Jenkins
data turbulence

Fully-automized testing (on request and nightly)
of compilation, testsuite, etc.

Tests on all machines; with different compilers;
on CPU and GPU:; and in float and double.

data_fields

g Schweizerische Eidgenossenschaft

Confédération suisse CSCS "

Confederazione Svizzera Swiss National \“
Eidgenossische Technische Hochschule Zirich

Confederaziun svizra Supercomputing Centre -
Swiss Federal Institute of Technology Zurich

