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Code changes I: Major  restructurings 

Working arrays 

• Fortran automatic arrays always result in a costly memory 

allocation since there is no stack on GPUs. 

• Most efficiently, all GPU arrays are allocated/deallocated only 

once before/after the timeloop. 

• Thus all local working arrays of subroutines are moved to the 

parent module, and allocate/deallocate subroutines are added. 

• To utility subroutines, working arrays are passed as arguments. 

 

Block physics 

• It is not strictly GPU-related, but implemented simultaneously. 

• The i and j dimensions are merged into one, made possible by 

the lack of lateral dependencies in the physics. 

• Data is copied to/from block before/after the physics, and all 

data fields are passed as argument to the parameterizations. 
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OpenACC 

• Open standard to run Fortran or C code on GPU accelerators 

by adding directives to the code, which are simply ignored as 

comments if the code is compiled for CPU (like OpenMP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advantages 

• Existing code remains mostly unchanged and shared with CPU. 

• Easy to learn and to port (simple) codes with. 

Disadvantages 

• Array data in GPU memory has to be managed manually 

(copied back and forth) to avoid unnecessary data transfers. 

• Hard to achieve performance portability. 

Overview 

• In the COSMO POMPA1 project a COSMO version leveraging 

GPU accelerators is developed. 

• GPUs can provide significantly larger performance (typically 

factor 3x to 5x) compared to traditional CPUs while consuming 

a similar amount of energy. 

• The GPU-port follows a two-fold approach:  

• The dynamical core has been re-written from scratch 

(C++/DSL “STELLA”). 

• The rest of the Fortran code has been retained, but 

refactored and expanded with OpenACC directives. 

• The focus of this poster is on Fortran (mainly the physics): 

• How do we port the Fortran code to GPU? 

• What changes will be introduced into COSMO? 

• What tools/approaches do we use for development? 

Code changes II: Local optimizations 

• Any GPU optimizations are constrained by the CPU performance 

of the code, which must not be degraded.  

• The goal is to have as much shared source code as possible. 

• Where absolutely necessary (most compute-intensive parts), 

special code is introduced for GPU. The most extreme case are 

the inversion routines inv_th/so in the radiation (see graph). 

• On CPU, efficient kernels2 are rather small and of low complexity 

so they can be vectorized by the compiler. 

• On GPU, it is usually more efficient for kernels to do a lot of 

computational work. 

 2kernel: body of a loop (refers to loop constructs here) 

Testing 

COSMO Testsuite 

• Short runs on reduced 

domain in many different 

configurations. 

• Fast: <20 min for >20 tests 

• Almost immediate technical 

validation of small changes. 

• Thresholds can be set for 

certain time spans and 

variables to account for 

expected differences. 

• Simple, modular framework 

makes it easy to add new 

tests or checkers. 

Physics standalone 

• Framework to work on physical parameterizations 

in isolation from the rest of the model. 

• Necessary data fields are written to disk before and 

after the parameterization in a full model run. 

• This data is used for initialization of the standalone 

and validation of it’s output. 

 

 

Advantages 

• Extremely fast testing/benchmarking. 

• Helps increasing modularity (or illustrating the lack thereof). 

 

Disadvantages 

• Additional work to set it up (find all dependencies). 

• So far only single timestep in one configuration. 

Jenkins 

• Fully-automized testing (on request and nightly) 

of compilation, testsuite, etc. 

• Tests on all machines; with different compilers; 

on CPU and GPU; and in float and double. 

Speedup with respect to reference CPU implementation for the inv_th routine in the 

radiation. Comparing GPU and CPU execution time for different optimization 

implementation. 

PROGRAM cosmo 
  timeloop: DO t=1,nt 
    CALL physics 
 
MODULE m_physics 
 
  SUBROUTINE physics 
    CALL radiation 
    CALL turbulence 
 
  SUBROUTINE radiation 
    REAL :: rad1(nx,ny) 
    INTEGER :: rad_i 
    !$acc data create(rad1) 
 
  SUBROUTINE turbulence 
    REAL :: tur1(nx,ny) 
    LOGICAL :: turb_l 

    !$acc data create(tur1)  

PROGRAM cosmo 
  CALL physics_wk_alloc 
  timeloop: DO t=1,nt 
    CALL physics 
 
MODULE m_physics 
  REAL,ALLOCATABLE :: & 
    rad1(:,:), tur1(:,:) 
 
  SUBROUTINE physics 
    CALL radiation 
    CALL turbulence 
 
  SUBROUTINE radiation 
    INTEGER :: i_rad 
    !$acc data present(rad1) 
 
  SUBROUTINE turbulence 
    LOGICAL :: l_tur 
    !$acc data present(tur1) 
 
  SUBROUTINE physics_wk_alloc 
    ALLOCATE(rad1(ie,je)) 
    ALLOCATE(tur1(ie,je)) 
    !$acc data create(rad1)     
    !$acc data create(tur1) 

PROGRAM cosmo_lowmem 
  timeloop: DO t=1,nt 
    CALL physics_wk_alloc 
    CALL physics 
... 

Working array-restructuring: An idealized example 

 1Performance on Massively Parallel Architectures 

PROGRAM sample_openacc 
USE mod, ONLY: ie,je,fact,init 
 IMPLICIT NONE 
 REAL :: arr1(ie,je), arr2(ie,je) 
  !$acc data create (arr1,arr2,fact)      ! start data region 
  !$acc update device (fact)              ! copy fact to GPU 
  CALL init (arr1, lacc=.TRUE.)           ! init. arr1 on GPU 
  CALL comp_gpu (arr1, fact, arr2)        ! compute arr2 on GPU 
  !$acc update host (arr2)              ! copy arr2 to CPU 
  !$acc end data                          ! end data region 
  PRINT*, MINVAL(arr2),MAXVAL(arr2)       ! print arr2 on CPU 
CONTAINS 
SUBROUTINE comp_gpu(arr) 
 REAL, INTENT(IN) :: arr1, fact 
 REAL, INTENT(OUT) :: arr2 
 INTEGER :: i,j 
  !$acc parallel present (arr1,fact,arr2) ! start parallel region 
  !$acc loop gang                         ! parallelization detail 
  DO j=1,je 
    !$acc loop vector                     ! parallelization detail 
    DO i=1,ie 
      arr2(i,j) = arr1(i,j) * fact(i,j)   ! compute arr2 on GPU 
    ENDDO 
  ENDDO 
  !$acc end parallel                      ! end parallel region 
END SUBROUTINE comp_gpu 
END PROGRAM sample_openacc 

• The increased work load makes the fused 

kernel more efficient on GPU, with scalarization 

providing an additional benefit. 

• The fused kernel doesn’t vectorize on CPU 

because it is too complex, which outweighs the 

benefit from scalarization. 

DO j=1,je 
  DO i=1,ie 
    tmp1(i,j) = f3_in1(i,j,1) * f2_in1(i,j) 
  ENDDO 
ENDDO 
 
DO j=1,je 
  DO i=1,ie 
    tmp2(i,j) = tmp1(i,j) * f2_in2(i,j)**2 
  ENDDO 
ENDDO 
 
!XL: too complex to vectorize 
CALL compute_complex( f3_in2(:,:,:), tmp3(:,:,:) ) 
 
DO k=1,ke 
  DO j=1,je 
    DO i=1,ie 
      f3_out(i,j,k) = 0.5*( tmp1(i,j,k) + tmp3(i,j,k) ) 
    ENDDO 
  ENDDO 
ENDDO 

CPU 

3D 2D 1D 

!$acc parallel 
!$acc loop gang 
DO j=1,je 
  !$acc loop vector 
  DO i=1,ie 
    tmp1 = f3_in1(i,j,1) * f2_in1(i,j) 
    tmp2 = tmp1 * f2_in2(i,j)**2 
    DO k=1,ke 
      !RUS: must be inlined 
      CALL compute_complex_scalar( f3_in2(i,j,k), tmp3 ) 
      f3_out(i,j,k) = 0.5*( tmp1 + tmp3 ) 
    ENDDO 
  ENDDO 
ENDDO 
!$acc end parallel 

GPU 
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Restructuring for GPU: A simiplyfied example 

Note that in this simplyfied case, the fused kernel might 

nevertheless be vectorized and run faster on CPU. In reality, 

the original code would be many times longer and the fused 

kernel correspondingly more complex. 


