

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Towards operational Ensemble Data Assimilation at the Convective Scale

Daniel Leuenberger, MeteoSwiss

3.3.2015, COSMO User Seminar, DWD, Offenbach

Next Generation MCH NWP System

KENDA Assimilation System

Update ensemble mean

Update deterministic analysis

$$\overline{x}^{a} = \overline{x}^{f} + K(y - H(\overline{x}^{f}))$$
$$x_{d}^{a} = x_{d}^{f} + K(y - H(x_{d}^{f}))$$

Is yet at same grid as ensemble members But will be on COSMO-1 grid in future to initialize COSMO-1 forecasts

C KENDA Experiments

- Summer Experiment
 - 5.-15.06.2014
 - Tested several configurations with different LETKF options
- Real-time, continuous analysis cycle
 - started at 11.01.2015, ongoing
 - Using most promising configuration from summer experiment
 - Including Radar Data Assimilation with Latent Heat Nudging
- Winter Experiment
 - 21.01. 12.02.2015

Experimental Setup

- 1h update cycles
- LETKF
 - 40 members + deterministic analysis (LETKF_DET)
 - Adaptive covariance inflation and localisation
 - RTPP scheme to increase spread
 - Soil moisture perturbations
- NUDGING
 - As operational COSMO-2 analysis but without assimilation of RH_2m
- NO_OBS
 - Cycle without assimilation of observations. Analysis is only constrained by driving model

Experimental Setup

Assimilated Observations

SYNOP

TEMP

WINDPROFILER

LETKF Sanity Check

Verification Results

- Deterministic forecasts started every six hours from all deterministic analyses
- 92 forecasts in summer, 40 forecasts in winter
- Integrated out to +24h
- Objective verification against
 - Swiss SYNOP surface observations
 - Radiosonde observations on whole model domain
 - Gridded QPE estimated from combined radar-gauge obs Switzerland only

C 2m-Temperature

BIAS

STD DEV

Temperature Analysis

Temperature Forecasts (+06h)

Comparison LETKF_DET vs NUDGING

Winter 2015

Variable	BIAS	STD DEV
Ps		
T_2M		
TD_2M		
WS_10M		
Т		
RH		
WS		
WD		

Summer 2014

Variable	BIAS	STD DEV
Ps		
T_2M		
TD_2M		
WS_10M		
Т		
RH		
WS		
WD		

LETKF_DET better than NUDGING LETKF_DET worse than NUDGING LETKF_DET equal to NUDGING

Precipitation Verification

- Fraction Skill Score for a scale of 30x30km
- Reference: QPE from radar-gauge combination
- 3h accumulations

Winter 2015

Summer 2014

COSMO-E Forecasts

• Compare COSMO-E ensemble forecasts initialized from KENDA against downscaled forecasts (winter experiment)

Variable	BIAS	STD DEV
Ps		
T_2M		
TD_2M		
WS_10M		

- Soil considerably drier in LETKF ensemble than in deterministic and nudging analysis. Caused by LETKF soil perturbations?
- Reset soil to NUDGING soil in ensemble and switched off perturbations

v Summary

- LETKF runs stably in a real-time configuration for almost 2 months now
- Forecasts started from LETKF_DET are of comparable quality to those started from NUDGING (small differences)
- COSMO-E forecasts benefit from KENDA IC perturbations during first forecast hours (STDDEV), but still drier and colder BIAS than downscaled COSMO-E
- Observations seem to have small impact on forecast quality, reasons to be investigated

- Continue real-time assimilation cycle, further diagnosis
 and tuning of LETKF
- Use COSMO-1 setup for deterministic analysis
- Test alternative methods to increase spread
 - Stochastic Physics Perturbation Tendencies (SPPT)
 - Relaxation to prior spread (RTPS, Whitaker et al., 2012)

Thank you for your attention