

Overview on ongoing work towards to the assimilation of cloud-sensitive data within KENDA

Annika Schomburg, Africa Perianez, Jason Otkin, Christoph Schraff, Robin Faulwetter, Roland Potthast

COSMO-User-Seminar 2015

annika.schomburg@dwd.de

Outline

(Main) motivation: improve the **solar radiation** predictions for the **renewable energy** sector (within the EWeLiNE project)

KENDA

Assimilation of photovoltaic power

Assimilation of SEVIRI satellite cloud products

Assimilation of SEVIRI satellite radiance

Assimilation of photovoltaic power

Assimilation of SEVIRI satellite cloud products

Assimilation of SEVIRI satellite radiance

Local Ensemble Transform Kalman Filter

Deutscher Wetterdienst Wetter und Klima aus einer Hand

The closer an ensemble member to the observation, the higher it's weight in the analysis linear combination. No linear/adjoint model needed!

Assimilation of photovoltaic power

Assimilation of SEVIRI cloud products

Assimilation of SEVIRI radiance

Assimilation of photovoltaic power

Forward operator (to derive the model equivalent for the LETKF):

- •Temperature coefficients
- Installed capacity

- Transform to radiation at tilted plane
- Compute losses (soiling, module temperature, optical losses)

Data quality

- PV panels yield unexpected power values for example in the case of
 - Meta-data often not given correct!
 - Peak power
 - Orientation / tilt angle
 - Possible failure of single strings
 - Soiling? Dust , leaves....
 - Shading by trees or buildings?
 - Snow on panels
 - Temperature coefficients unknown

→ Some kind of quality control is essential!! Some bad data can easily spoil the positive impact of a lot of good data in the assimilation process!

50hertz

Quality control system

Quality monitoring for single panels

Data with sufficient quality

(out of 30,000 panels)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

NEXT:

- Write blacklist of panels with bad data quality.
- > Technical implementation
- First assimilation experiments.

Assimilation of photovoltaic power

Assimilation of SEVIRI satellite cloud products •

Assimilation of SEVIRI satellite radiance

Satellite cloud product information

 Geostationary satellite data: Meteosat-SEVIRI (Δx ~ 5km over central Europe, Δt=15 min)

→ contains information on horizontal and vertical distributions of clouds

DWL

Source: EUMETSAT

Method

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Extract information if a pixel is observed as <u>cloudy</u>:

see Schomburg et al., QJRMS, 2014

14

Method

Extract information if a pixel is observed as <u>cloud-free:</u>

see Schomburg et al., QJRMS, 2014

Forecast results: low stratus case

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Total cloud cover after 12 h free forecast

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

50hertz

1 2 3 4 5 6 7 8 9 10 11 12 height [km]

50N

45N

Fraunhofer IWES

Upper air verification for 83 hours cycling starting at 12 UTC, 12 Nov 2011: bias

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Bias: OBS - FG

assimilation of conventional obs only assimilation of conventional + cloud obs

 \rightarrow Strong bias in mid-levels...?

FG too cold and much too humid

Moisture increment for 12 UTC, 13 Nov 2011

Deutscher Wetterdienst Wetter und Klima aus einer Hand

→ Problems caused by incorrect cloud top height in NWCSAF cloud top height products

18

Eliminate suspicious observations

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

 \rightarrow Use flag from cloud analysis to throw away data flagged as "inconsistent"

New experiment

Flag

\rightarrow New simulation

with more strict data elimination

Results of new experiment with rigid quality control: Upper air verification

Scores computed based on several 6h-forecasts from 13-15 November 2011:

→ No detrimental effect of cloud assimilation visible any more, but sometimes a lot of cloud data has to be screened out

Assimilation of photovoltaic power

Assimilation of SEVIRI satellite cloud products •

Assimilation of SEVIRI satellite radiance

Sensitivities of SEVIRI channels

fractional

high semitr

very high

high

medium low very low

cloudfree

cloudfree

undefined

Cloud classification at 1 June

2011, 18:00 UTC

23

Sensitivities of SEVIRI channels: FG computed with RTTOV

SEVIRI radiance assimilation: channel WV7.3

Deutscher Wetterdienst Wetter und Klima aus einer Hand

First assimilation experiment by former DWD colleague Africa Perianez and visiting scientist Jason Otkin (University of Wisconsin-Madison):

BIAS and RMSE time series for all sky during the 12 hour assimilation period for the Control (black lines) and SEVIRI (red lines) assimilation cases. With parameter values, Observation error $\sigma_{obs} = 3.5$, horizontal localization radius $l_h = 35$ Km and vertical localization radius $l_v = 0.7$.

rennet

Deutscher Wetterdienst Wetter und Klima aus einer Hand

• Progress towards the assimilation of cloud-sensitive data:

Photovoltaic power: Quality control running \rightarrow blacklist "bad panels" \rightarrow implementation of usage of the data in KENDA \rightarrow experiments

SEVIRI cloud products: detected and solved problem with false cloud top heights in satellite product

SEVIRI radiances: very first experiments have been run, more will follow

Thank you for your attention.

