

Assimilating 3D radar reflectivity with an Ensemble Kalman Filter on a convection-permitting scale

COSMO User Seminar 2015

Theresa Bick^{1,*}, Roland Potthast², Clemens Simmer¹, Klaus Stephan², Silke Trömel¹, Kathrin Wapler²

¹Meteorological Institute, University of Bonn, Germany ²Deutscher Wetterdienst, Offenbach, Germany

*thbick@uni-bonn.de

Special thanks to U. Blahak (DWD), H. Reich (DWD), C. Schraff (DWD), Y. Zeng (LMU)

March 03, 2015

Motivation

Goal

 Improve short-term model forecasts of convective events

Radar data

- High resolution in both space + time, dense coverage
- 3D information
- Here: only radar reflectivity.
 Radial winds: Y. Zeng (LMU),
 M. Würsch (LMU) → poster

COSMO-DE and LETKF

- KENDA: Local Ensemble
 Transform Kalman Filter (LETKF)
 for COSMO-DE (developed at
 DWD, following Hunt et al., 2007)
- Propagate non-linear model equations
- Estimate flow-dependent covariances
- 40 ensemble members + 1 deterministic run

Radar forward operator

Simulate synthetic 3D radar scan based on COSMO-DE model fields (EMRADSCOPE, developed at DWD/KIT)

- No-reflectivity: set all values below 5 dBZ to 5 dBZ
- Superobbing: achieve relatively homogeneous horizontal data distribution
 - Reduce computational costs
 - Relax necessity of direct match between model and obs (double penalty problem)

Radar forward operator

Simulate synthetic 3D radar scan based on COSMO-DE model fields (EMRADSCOPE, developed at DWD/KIT)

- No-reflectivity: set all values below 5 dBZ to 5 dBZ
- Superobbing: achieve relatively homogeneous horizontal data distribution
 - Reduce computational costs
 - Relax necessity of direct match between model and obs (double penalty problem)

Radar forward operator

Simulate synthetic 3D radar scan based on COSMO-DE model fields (EMRADSCOPE, developed at DWD/KIT)

- No-reflectivity: set all values below 5 dBZ to 5 dBZ
- Superobbing: achieve relatively homogeneous horizontal data distribution
 - Reduce computational costs
 - Relax necessity of direct match between model and obs (double penalty problem)

Cycling study

Case study: May 26th 2014

- Spinup from 0-12 UTC (no data assimilation)
- Sh cycling (12-15 UTC) followed by 6h free forecast (15-21 UTC)

CONV

Assimilated obs: conventional (synop, temp, airep)

RADAR+CONV

Assimilated obs: reflectivity, no-reflectivity, conventional

- Study influence of update frequencies: 5, 15, 30, 60 minutes
- Consider all available data since last analysis

Det run 15min update: Analysis cycle (Reflectivity)

Observation: CONV: RAD+CONV:

Det run 15min update: Forecast window (Reflectivity)

Observation: CONV: RAD+CONV:

FG ensemble 15min update: Analysis cycle (#ens members > 20dBZ)

Obs (> 20dBZ): CONV:

RAD+CONV:

FG ensemble 15min update: Forecast window (#ens members > 20dBZ)

Obs (> **20dBZ): CONV:**

RAD+CONV:

First verification

In observation space: Fraction Skill Score

- compares model and observation based on exceedance of a dBZ threshold
- ranges from 0 to 1, perfect score 1

In model space:

Equitable Threat Score, Frequency Bias

- compares precipitation rate from the model against radar derived precipitation rate (mm/h)
- ETS ranges from -1/3 to 1, perfect score 1
- FBI ranges from 0 to ∞ , perfect score 1

Fraction Skill Score

CONV:

RADAR+CONV:

Assimilating 3D radar reflectivity with an Ensemble Kalman Filter on a convection-permitting scale

Assimilating 3D radar reflectivity with an Ensemble Kalman Filter on a convection-permitting scale

Surface pressure tendency during assimilation

A measure of noise in a model:

Summary: Radar reflectivity assimilation in KENDA

- So far we investigated only 1 case study
- In terms of FSS, assimilating radar reflectivity yields very good agreement between analysis and observation
- Forecast impact is visible during first 2-4 hours in both FSS and ETS
- Underestimation of precipitation intensity in all experiments
- Less precipitation in RADAR experiment different treatment of no-rain obs necessary?
- After 1h forecast, 60 min update seems superior to 5 min update
- Rapid updates do not allow the model to adjust from changes introduced by data assimilation

Assimilating 3D radar reflectivity with an Ensemble Kalman Filter on a convection-permitting scale

COSMO User Seminar 2015

Theresa Bick^{1,*}, Roland Potthast², Clemens Simmer¹, Klaus Stephan², Silke Trömel¹, Kathrin Wapler²

¹Meteorological Institute, University of Bonn, Germany ²Deutscher Wetterdienst, Offenbach, Germany

*thbick@uni-bonn.de

Special thanks to U. Blahak (DWD), H. Reich (DWD), C. Schraff (DWD), Y. Zeng (LMU)

March 03, 2015

