

Institut für Meteorologie und Geophysik · Universität Innsbruck

Evaluation of the Performance of COSMO-1 in Truly Complex Terrain

Brigitta Goger¹, Mathias W. Rotach¹, Alexander Gohm¹, Oliver Fuhrer², Ivana Stiperski¹ and Marco Arpagaus²

¹Institute of Meteorology and Geophysics, University of Innsbruck, Austria ²Federal Office for Meteorology and Climatology, MeteoSwiss, Zürich, Switzerland

The Project "Turb-i-Box"

Motivation

Operational numerical weather prediction has gone through significant improvements in the last years, using horizontal grid resolutions up to $\Delta x=1 \, \text{km}$. However, there are still some model deficiencies, especially in mountainous areas. We want to explore the performance of COSMO-1 in the Inn Valley, Austria, by evaluating the model's terrain representation and parameterizations.

Main Questions:

- ► How does COSMO-1 perform in complex terrain?
- Does the model produce the *right* fields for the *right* reasons?
- Why does the model produce the right/wrong output?

Test Location and Data:

- ► Inn Valley, Tyrol, Austria
- Measurement data from the i-Box dataset

Methods: Case Studies

Weather situations representative for processes in complex terrain:

- ► Valley wind day
- Stable boundary layer
- ► Foehn wind events
- Synoptic influence on the valley (e.g. channeling)
- \rightarrow Simulations are either initialized at 00 UTC or 12 UTC and run for 24 hours.

Results: Valley Wind Day

The i-Box Data

Six measurement sites on locations representative for complex terrain, such as

- Valley bottom
- ► Slope
- Mountain top

Figure 1 : A view from the West into the Inn Valley and the measurement sites.

Figure 2 : One of the slope stations, Hochhäuser.

Remote sensing Flux Towers: Long-term measurements Usual meteorological parameters ► HATPRO (Passive Microwave Temperature & Humidity Profiler) Turbulent fluxes Doppler Lidar (HALO) ► Radiation Scintillometer Turbulence Kinetic Energy (TKE)

Figure 7 : Time series of 10 m wind speed and wind direction of the valley station, Kolsass (left) and the slope station Hochhäuser (right). Lines with dots indicate the observations (---), while full lines show the model output (---)

Results: Stable Boundary Layer

Nighttime: June 11, 2014

After evening transition

Fully developed down-valley flow

The COSMO Model in Complex Terrain

Model Setup:

- Similar to MeteoSwiss pre-operational setup
- $\blacktriangleright \Delta x=1.1$ km, 80 vertical levels
- ► Domain (Fig. 3) spans main Alpine Range (to be extended)
- ► Initialization: COSMO-1 analysis, with COSMO-7 fields as boundary data

Challenges in high-resolution modeling in complex terrain

- 1. 'Gray zone' turbulence
- Boundary-layer schemes still apply for $\Delta x=1$ km, but a resolved part of the processes is already present.
- 2. Input Data
- The input data (e.g, soil moisture) should have a high resolution to fully exploit the potential advantages of model resolution.
- Parameterizations (radiation & turbulence)
- Developed for horizontally homogeneous and flat surroundings, hence maybe not suitable for complex terrain.
- 4. Terrain Representation

Mountain peaks and steep slopes are challenges for numerical stability and representation on the grid.

- Valley-wind circulation reverses during evening transition. Down-valley flows are much weaker (fig. 8 & 9)
- ► Day: Good agreement between model and observations in TKE values (fig. 10)
- ► Night: Model underestimates the TKE magnitude, with an even larger difference on the slope station (fig. 10, left)

Figure 8

Figure 10 : Time series of turbulence kinetic energy (TKE) of the valley station, Kolsass (left) and the slope station Hochhäuser (right). Lines with dots indicate the observations (---), while full lines show the model output (---)

Figure 4 : South-north cross-sections (x=8 km) of the six i-Box stations and their representation on the model grid.

Conclusions and Outlook

► Correct terrain representation plays a crucial role for numerical weather prediction in mountainous areas

- ► The processes on the valley floor are generally better represented than on the slope
- Better model performance during daytime than during nighttime
- ► Continue with data analysis including a special focus on terrain representation

• Evaluate the components of the parameterizations with the i-Box data for complex terrain (Inn Valley) and data for "rolling terrain" (Payerne, Switzerland)

Acknowledgements

The project "Turb-i-Box" at the University of Innsbruck is fully funded by the Swiss Federal Office for Meteorology and Climatology (MeteoSwiss). The computational results presented have been achieved using the Vienna Scientific Cluster (VSC).

Contact: Brigitta Goger (brigitta.goger@uibk.ac.at), Institute of Meteorology and Geophysics, Innrain 52f, A-6020 Innsbruck