Simulation of atmospheric CO₂ variability with the mesoscale model TerrSysMP

Markus Übel and Andreas Bott

Meteorologisches Institut Universität Bonn University of Bonn Transregional Collaborative Research Centre 32

Introduction

Markus Übel

- Natural CO₂ fluxes depend on:
 - plant type (e.g. agriculture, forests, grassland, ...)
 - soil conditions (texture, temperature, moisture)

- Natural CO₂ fluxes depend on:
 - plant type (e.g. agriculture, forests, grassland, ...)
 - soil conditions (texture, temperature, moisture)
- Anthropogenic emissions

atmospheric CO₂ variability

• Diurnal cycle:

Meteorologisches Institut

> Universität Bonn

- net gain of CO₂ during night (R_{leaf} + R_{soil})
- net loss of CO₂ at daytime (R_{leaf} + R_{soil} A)
- Spatial heterogeneity:
 - atmospheric transport
 - land surface heterogeneity (land use, orography)

atmospheric CO₂ variability

- Diurnal cycle:
 - net gain of CO₂ during night (R_{leaf} + R_{soil})
 - net loss of CO₂ at daytime (R_{leaf} + R_{soil} A)
- Spatial heterogeneity:
 - atmospheric transport
 - land surface heterogeneity (land use, orography)

Motivation:

Mesoscale simulation of atmospheric CO₂ variability

- \rightarrow understand diurnal variability and spatial CO₂ patterns
- \rightarrow useful information i.e. for inverse modeling, plant science, ...

CO₂ processes in TerrSysMP

Markus Übel

TerrSysMP with CO₂ coupling

TerrSysMP:

🖙 Poster Shrestha et al.

- Coupling of COSMO (4.21) with the Community Land Model (CLM3.5) via the external coupler OASIS3
 - \rightarrow TERRA is replaced by CLM
- further coupling to the hydrological model
 ParFlow possible (not used for this study)

TerrSysMP with CO₂ coupling

TerrSysMP: Poster Shrestha et al.

- Coupling of COSMO (4.21) with the Community Land Model (CLM3.5) via the external coupler OASIS3
 - \rightarrow TERRA is replaced by CLM
- further coupling to the hydrological model
 ParFlow possible (not used for this study)
- Extension with <u>CO₂ coupling</u> (two-way)
 - CLM calculates natural CO₂ fluxes using atm.
 CO₂ from COSMO
 - COSMO receives **net CO₂ flux** from CLM
 - **COSMO** performs atmospheric **CO₂ transport**

TerrSysMP with CO₂ coupling

Markus Übel

Meteorologisches Institut

> Universität Bonn

CO₂ transport and anthropogenic emissions

Inclusion of an atmospheric tracer in COSMO_4.21
needed for the atmospheric transport of CO₂

Anthropogenic emissions:

- use of CO₂ emission data
 [provided by TNO, The Netherlands]
- downscaling to 1 km resolution [provided by P. Franke, E. Bem (RIU Köln)]
- calculation of hourly emissions depending on month, weekday, time of day
 → introduced as CO₂ source to the CO₂ tracer in COSMO

TerrSysMP with CO₂ coupling

Markus Übel

University of Bonn (TR 32)

6

Photosynthesis and leaf respiration

photosynthesis (A) and canopy **transpiration** (TP) is controlled by the **stomatal resistance r**_{st} of leafs:

$$\frac{1}{r_{st}} = \frac{A}{c_s} \frac{e_s}{e_i^*} P_{atm} + b$$

based on Collatz et al. (1991, 1992)

m = m(PFT)

Markus Übel

Meteorologisches Institut

> Universität Bonn

- gross photosynthesis Α
 - CO₂ partial pressure
- saturation vapor pressure in the leaf e_i P_{atm} atmospheric pressure minimal stomatal conductance

 \rightarrow c_s, e_s and P_{atm} are derived by COSMO variables p, q_v and q_{co2} at surface level

V_{c max} maximum rate of carboxylation

leaf (dark) respiration:

 $R_{leaf} = 0.015 \cdot V_{c max}$

based on Collatz et al. (1991)

Soil respiration

Heterotrophic soil respiration:

- Implementation of the carbon turnover model RothC-26.3 (Coleman and Jenkinson, 2008) into CLM3.5
 - → calculates decomposition of organic carbon into carbon pools and CO₂ (A, B horizon)
 - \rightarrow generated CO₂ is released to the atmosphere
- Decomposition of leaf litter and organic matter (O horizon)
- Autotrophic (root) respiration depending on plant activity (photosynthesis, carbon allocation) c-

Coleman and Jenkinson (2008)

www.nesoil.com

Simulation of diurnal and mesoscale CO₂ variability

Markus Übel

Meteorologisches Institut Universität Bonn

Model domain

Universität	Diurnal CO ₂ cycle and	
Bonn	esoscale heterogeneity	

\succ Horizontal CO₂ distribution:

Diurnal CO₂ cycle and mesoscale heterogeneity

Vertical cross section of CO₂:

- early morning (04 UTC):
 - accumulation of CO₂ only near the surface during night
 - strong decrease of CO₂ in the lowest 100 m \rightarrow stable stratification (clear sky)

• afternoon (14 UTC):

- influence of photosynthesis in the whole atm. boundary layer \rightarrow convective ABL

Meteorologisches Institut

> Universität Bonn

CO₂ and energy fluxes

net ecosystem exchange (NEE)

• latent heat flux (LH) / sensible heat flux (SH)

University of Bonn (TR 32)

measurements of **CO**, concentrations at a 120m tower of Research Centre Jülich GmbH in

10m, 20m, 30m, 50m and 100m

www.fz-juelich.de

University of Bonn (TR 32)

University of Bonn (TR 32)

University of Bonn (TR 32)

- good agreement of diurnal CO₂ amplitude on days with <u>cloudy nights</u> and <u>moderate wind</u>
- underestimation of nocturnal CO₂ concentration in <u>clear sky nights</u> with <u>weak wind</u>

35 m above ground

better agreement of nocturnal CO₂ concentration in 35 m above the ground
 → slightly too low diurnal amplitude

• **good agreement** of diurnal CO₂ amplitude independent of the weather situation

≈ 100 m above ground

• **good agreement** of diurnal CO₂ amplitude independent of the weather situation

? What is the reason for the different behavior in different heights

Markus Übel

Universitör Bonn CO₂ transport in the boundary layer TR 32

04/05 June 2014:

good agreement of vertical temperature gradient

vertical CO₂ distribution realistically simulated with TerrSysMP

06/07 June 2014:

strong underestimation of vertical temperature gradient (near surface inversion) in TerrSysMP

- → too strong turb. transport
- ➔ too less CO₂ accumulation near the surface

Markus Übel

Meteorologisches **CO₂ transport in the boundary layer** Universität Bonn FR 32

04/05 June 2014:

Institut

0 5

good agreement of vertical temperature gradient

 \rightarrow vertical CO₂ distribution realistically simulated with TerrSysMP

Underestimation of near surface CO₂ amplitude in windless clear sky nights with strong nocturnal temperature inversion

06/07 June 2014:

strong underestimation of vertical temperature gradient (near surface inversion) in TerrSysMP

- → too strong turb. transport
- \rightarrow too less CO₂ accumulation near the surface

Markus Übel

Summary

Markus Übel

Results of the mesoscale simulations with TerrSysMP:

- CO₂ increase during night especially in flat area and in narrow valleys (mountain – valley breeze)
- CO₂ decrease during the morning and vertical influence of photosynthesis through the whole convective ABL
- realistic simulation of CO₂ fluxes and latent/sensible heat fluxes with CLM
- good representation of the vertical CO₂ distribution and the diurnal CO₂ amplitude in nights with moderate wind and weak vertical temperature gradients
- underestimation of the nocturnal CO₂ increase near the surface in clear sky nights
 strong near surface temperature inversion not well captured in TerrSysMP

Thanks for your attention!

Markus Übel

Markus Übel

Meteorologisches Institut

> Universität Bonn

University of Bonn (TR 32)

A1

Comparison of temperature profiles with TerSysMP and COSMO (with TERRA_ML) → both model settings underestimate nocturnal temperature inversion Markus Übel University of Bonn (TR 32)

Influence of CO₂ variability on atmospheric moisture

Difference of dew point in 2m between a TerrSysMP simulation with CO_2 coupling and a simulation with constant CO_2 , 40 km-average (cloudy day)

Markus Übel

Meteorologisches Institut Universität Bonn

Appendix 4

Sensitivity of NEE and transpiration [%] on a CO₂ increase of 14% (355 \rightarrow 405 ppmv)

→ Comparison of simulation of 24 July 2012 (clear sky day) with constant atm. CO₂ of 355 ppm (≈ 1990) and 405 ppm (≈ 2018)

04/05 June 2014:

06/07 June 2014:

Markus Übel

University of Bonn (TR 32)

10

5

wind velocity [m s⁻¹]

23 July 2012

CO₂ concentration [PPMV]

≤360.0	(Δ =5.00)	≥435.0