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•  Natural CO2 fluxes depend on: 
    -  plant type (e.g. agriculture, forests, grassland, …) 
    -  soil conditions (texture, temperature, moisture) 
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•  Anthropogenic emissions 
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•   Diurnal cycle: 
 

      -   net gain of CO2 during night (Rleaf + Rsoil)  
      -   net loss of CO2 at daytime (Rleaf + Rsoil – A)  

 
•   Spatial heterogeneity: 
 

      -   atmospheric transport  
      -   land surface heterogeneity (land use, orography) 

CO2 

time 
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 Motivation: 
 

      Mesoscale simulation of atmospheric CO2 variability 
       understand diurnal variability and spatial CO2 patterns 
       useful information i.e. for inverse modeling, plant science, …  

•   Diurnal cycle: 
 

      -   net gain of CO2 during night (Rleaf + Rsoil)  
      -   net loss of CO2 at daytime (Rleaf + Rsoil – A)  

 
•   Spatial heterogeneity: 
 

      -   atmospheric transport  
      -   land surface heterogeneity (land use, orography) 
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 TerrSysMP:      Poster Shrestha et al. 
 

    -  Coupling of COSMO (4.21) with the 
       Community Land Model (CLM3.5) via the 
       external coupler OASIS3 
 

        TERRA is replaced by CLM 
 

    -  further coupling to the hydrological model  
       ParFlow possible (not used for this study) 
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 TerrSysMP:      Poster Shrestha et al. 
 

    -  Coupling of COSMO (4.21) with the 
       Community Land Model (CLM3.5) via the 
       external coupler OASIS3 
 

        TERRA is replaced by CLM 
 

    -  further coupling to the hydrological model  
       ParFlow possible (not used for this study) 

 Extension with CO2 coupling (two-way) 
 

     -  CLM calculates natural CO2 fluxes using atm.  
        CO2 from COSMO 
 

     -  COSMO receives net CO2 flux from CLM 
 

    -  COSMO performs atmospheric CO2 transport 
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 Inclusion of an atmospheric tracer in COSMO_4.21 
     needed for the atmospheric transport of CO2 

 
 Anthropogenic emissions: 
 

     -   use of CO2 emission data  
            [provided by TNO, The Netherlands] 
 

     -   downscaling to 1 km resolution 
            [provided by P. Franke, E. Bem (RIU Köln)] 
  

     -   calculation of hourly emissions depending on 
         month, weekday, time of day  
          introduced as CO2 source 
              to the CO2 tracer in COSMO      

Downscaled (1 km) anthropogenic  

CO2 emission [mg m-2 s-1] 

Bonn 

Cologne 
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•   photosynthesis (A) and canopy transpiration (TP) is controlled by the 
     stomatal resistance rst of leafs: 
 
 
 
 
 
 
 
     cs, es and Patm are derived by COSMO variables p, qv and qCO2 at surface level 

 
•   leaf (dark) respiration: 

based on Collatz et al. (1991, 1992)  

m  = m (PFT)                                          ei        saturation vapor pressure in the leaf 
A        gross photosynthesis                  Patm   atmospheric pressure  
cs       CO2 partial pressure                    b         minimal stomatal conductance  
es       vapor pressure at leaf surface 

Rleaf = 0.015·Vc max     Vc max maximum rate of carboxylation   
 

based on Collatz et al. (1991) 
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 Heterotrophic soil respiration: 
     

-   Implementation of the carbon turnover 
    model RothC-26.3 (Coleman and Jenkinson, 2008)  
    into CLM3.5 
 

     calculates decomposition of organic carbon 
         into carbon pools and CO2 (A, B horizon) 
     generated CO2 is released to the atmosphere 

 
 Decomposition of leaf litter and organic 
    matter (O horizon) 
 
 Autotrophic (root) respiration depending on 
    plant activity (photosynthesis, carbon allocation) 

Coleman and Jenkinson (2008) 

www.nesoil.com 
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Cologne 

Liège 

S  i  e  g 

Jülich tower 

  1 needleleaf trees (9.7%)              15 crops (36.6%)      
  7 broadleaf trees (30.8%)        16 urban (13.5%) 
13 grassland (5.4%)                     rest (3.9%) 

Düsseldorf 

20km 
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 Horizontal CO2 distribution: 
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Diurnal CO2 cycle and 
mesoscale heterogeneity 

 Vertical cross section of CO2: 

•   early morning (04 UTC):    
     -   accumulation of CO2 only near the surface during night 
     -   strong decrease of CO2 in the lowest 100 m  stable stratification (clear sky) 
 

•   afternoon (14 UTC): 
     -   influence of photosynthesis in the whole atm. boundary layer  convective ABL 



CO2 and energy fluxes 

Markus Übel 12 

TR 32 

University of Bonn (TR 32) 

•   net ecosystem exchange (NEE) 

•   latent heat flux (LH) / sensible heat flux (SH) 

winter wheat 
(Merzenhausen) 

grassland 
(Niederzier) 

needleleaf forest 
(Wüstebach) 
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www.fz-juelich.de 

measurements of CO2 concentrations at a 120m tower  
of Research Centre Jülich GmbH in 
 

10m, 20m, 30m, 50m and 100m 
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www.fz-juelich.de 

measurements of CO2 concentrations at a 120m tower  
of Research Centre Jülich GmbH in 
 

10m, 20m, 30m, 50m and 100m 

Simulation with TerrSysMP: 
03. – 10. July 2014 
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CO2 transport in the boundary layer 
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10 m above ground 

•   good agreement of diurnal CO2 amplitude on days with cloudy nights and 
     moderate wind 
 

•   underestimation of nocturnal CO2 concentration in clear sky nights with weak wind 
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35 m above ground 

•   better agreement of nocturnal CO2 concentration in 35 m above the ground 
      slightly too low diurnal amplitude 
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≈ 100 m above ground 

•   good agreement of diurnal CO2 amplitude independent of the weather situation 
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≈ 100 m above ground 

•   good agreement of diurnal CO2 amplitude independent of the weather situation 
 

            What is the reason for the different behavior in  
            different heights 
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04/05 June 2014: 

06/07 June 2014: 

good agreement of vertical  
temperature gradient 
 

 vertical CO2 distribution 
     realistically simulated 
     with TerrSysMP 

strong underestimation of  
vertical temperature gradient 
(near surface inversion) 
in TerrSysMP 
 

 too strong turb. transport 
 too less CO2 accumulation 
     near the surface 

T 

T 

CO2 

CO2 
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     near the surface 

T 

T 

CO2 

CO2 

 Underestimation of near surface CO2 amplitude in windless  
      clear sky nights with strong nocturnal temperature inversion 
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Results of the mesoscale simulations with TerrSysMP: 
 
   CO2 increase during night especially in flat area and in narrow valleys  
      (mountain – valley breeze) 
 
   CO2 decrease during the morning and vertical influence of photosynthesis 
      through the whole convective ABL 
 
   realistic simulation of CO2 fluxes and latent/sensible heat fluxes with CLM 
 
   good representation of the vertical CO2 distribution and the diurnal CO2 amplitude  
      in nights with moderate wind and weak vertical temperature gradients 
 
   underestimation of the nocturnal CO2 increase near the surface in clear sky nights  
       strong near surface temperature inversion not well captured in TerrSysMP 



Thanks for your attention! 

Markus Übel University of Bonn (TR 32) 
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Comparison of temperature profiles with TerSysMP and COSMO (with TERRA_ML) 
 both model settings underestimate nocturnal temperature inversion  

Jülich 
06/07 June  
2014 

Jülich 
03/04 June  
2014 
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Influence of CO2 variability on atmospheric moisture 

Difference of dew point in 2m between a TerrSysMP simulation with CO2 coupling and  
a simulation with constant CO2, 40 km-average (cloudy day) 
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transpiration difference [%] (405 – 355 ppmv) NEE difference [%] (405 – 355 ppmv) 

Sensitivity of NEE and transpiration [%] on a CO2 increase of 14% (355  405 ppmv) 
 

  Comparison of simulation of 24 July 2012 (clear sky day) with constant atm. CO2  
      of 355 ppm (≈ 1990) and 405 ppm (≈ 2018)  

10 UTC 10 UTC 
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04/05 June 2014: 06/07 June 2014: 
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23 July 2012 

4 UTC 7 UTC 15 UTC 


