

Using "Perturbed Microphysics" to Determine Cloud Susceptibilities

Marco Paukert and Corinna Hoose

INSTITUTE FOR METEOROLOGY AND CLIMATE RESEARCH - ATMOSPHERIC AEROSOL RESEARCH (IMK-AAF)

www.kit.edu

"Untangling aerosol effects on clouds…"

(Stevens and Feingold, 2009 Nature)

aerosols as ice nuclei

small subset of aerosols triggering of cloud ice formation at T>-38°C modification of cloud optical properties and cloud lifetime

- buffering mechanisms may reduce cloud response to aerosol perturbations cloud-dynamical buffers, e.g. due to modified circulation microphysical buffers, e.g. modified process rates
- **cloud susceptibility** dA/dN_d (Platnick & Twomey, 1994) change of albedo with change of absolute cloud droplet number

this study

- what is the effect of additional ice introduced in clouds?
- adapt susceptibility concept to integral cloud properties and ice nuclei
 - e.g., $dLWP/dN_{aer}$, dF_{LW}/dN_{aer} ,
 - N_{aer} = ice nucleating aerosols, e.g. mineral dust
- isolate microphysical from cloud-dynamical feedbacks
 - how does restructuring of circulation patterns contribute?

2

Impacts on the temperature field feed back on the circulation

Ways to calculate susceptibilities

- **Q**: quantity of interest, e.g. liquid water path, radiative flux
- S: susceptibility with respect to perturbed aerosol concentrations

Ways to calculate susceptibilities

- Q: quantity of interest, e.g. liquid water path, radiative flux
- S: susceptibility with respect to perturbed aerosol concentrations

- semi-idealized setup
 - Arctic stratocumulus: ISDAC-based, Ovchinnikov et al., 2014
 - deep convection: Weisman and Klemp (1982) profile
- $\Delta x \approx 100m$, some hours simulation time
- COSMO-ART (Vogel et al., 2009) pollen module used for tracers
- two moment scheme for warm and cold cloud microphysics (Seifert and Beheng 2006)
- ice formation extended by ice nuclei depletion (Paukert and Hoose, 2014) aerosol-dependent immersion freezing and deposition nucleation (Niemand et al., 2012; Ullrich et al., in prep.)

Arctic mixed-phase cloud

Paukert and Hoose, 2014

Marco Paukert and Corinna Hoose - Perturbed Microphysics

Institute for Meteorology and Climate Research – Atmospheric Aerosol Research (IMK-AAF)

Karlsruhe Institute of

cloud-dynamical

microphysical

susceptibilitiy

 $S - S^*$

Extracting the effect of modified dynamics

transport of humidity:

Marco Paukert and Corinna Hoose - Perturbed Microphysics

cloud-dynamical enhancement of the microphysical susceptibilitiy

t>300min:

- enhancement decays
- adjustment of turbulent transport: vapor, ice nuclei
- shear production of turbulence modulates the vertical transport

Susceptibilies: Arctic mixed-phase cloud

- S* derived from "perturbed microphysics"
 - negative: decreasing LWP
 - higher magnitude for bacteria
 - base state dependent susceptibility

Institute for Meteorology and Climate Research – Atmospheric Aerosol Research (IMK-AAF)

Marco Paukert and Corinna Hoose - Perturbed Microphysics

Deep Convection

- Weisman, Klemp (1982) profile
 - no equilibrium state, complex structure
 - strong updrafts / cooling rates
 - whole range of freezing temperatures and mechanisms is covered
 - dozens of interactions between cloud particles

(W. Straub, dissertation 2008)

general results

- bacteria show higher S^{*} than dust despite lower maximum IN activity
 → higher impact at lower levels
- $S^*(N_{aer})$ more variable than in stratocumulus

Deep Convection: microphysics

- PM results as horizontal averages
- t0 = 1hr after initialization
- trigger: $\Delta N_{aer} = \pm 10\%$
- here more ice nuclei yield less rain

Institute for Meteorology and Climate Research – Atmospheric Aerosol Research (IMK-AAF)

Marco Paukert and Corinna Hoose - Perturbed Microphysics

Institute for Meteorology and Climate Research – Atmospheric Aerosol Research (IMK-AAF)

Marco Paukert and Corinna Hoose - Perturbed Microphysics

Summary and Outlook

perturbed microphysics vs. ensemble runs

S derived from simulations with dynamical feedbacks is highly variable

"perturbed microphysics" with unaffected dynamics can yield \mathbf{S}^* without ensemble

S* vs. **S**

enhancement of S due to feedbacks on dynamics ~ 50% in Arctic stratocumulus (temporary effect)

deep convection

more pronounced dependence of S^* on N_{aer} more ice nuclei $\not\prec$ more precipitation

ongoing work

some more cloud systems and IN species non-idealized simulations

Institute for Meteorology and Climate Research – Atmospheric Aerosol Research (IMK-AAF)