Effects of Hail Parameterization within the COSMO-CLM in Simulated Convective Storms

Cecille M. Villanueva-Birriel, Kwinten Van Weverberg, Maryna Lukach, Philippe Marbaix, Jean-Pascal van Ypersele

GEORGES LEMAÎTRE CENTRE FOR EARTH AND CLIMATE RESEARCH, UCLOUVAIN, LOUVAIN-LA-NEUVE, BELGIUM

cecille.villanueva@uclouvain.be

Tuesday, April 28, 2015

1

Motivation

2

- Currently, scientists use numerical global models to predict the climate system behavior due to increases in greenhouse gases.
- □ However, models differ substantially.
 - Major uncertainties are related to model representations of <u>clouds</u> and <u>precipitation</u> (*Boucher et al. 2013, IPCC*)
- Focus Hailstorms known for their great economic and hazardous impact
 - Important to properly simulate hailstone sizes at the surface.

Background- Microphysical processes

Microphysical processes occur on a scale too small to be modeled explicitly in climate models

Condensation and **droplet growth** occurring inside a 1-km model grid

box.

Model Grid with Resolved Processes

Microphysical Parameterization

2M microphysics (MP) scheme – predicts both mixing ratio (q) and number concentration (N)

■ Seifert and Beheng (2006)

Cloud water, rain, ice, snow, graupel

- Hail category added (Blahak, 2008; Noppel, 2010)
 - Hail characteristics within new parameterization in COSMO-CLM model (Van Weverberg et al. 2014)
 - This study focused on rain representation.

Microphysical Parameterization

5

UCL

- Represent sub-grid scale processes
 - Warm rain process (T > $0 \circ C$)
 - Ice processes (T< 0° C)
- Bulk microphysics functional form of particle size distributions.
 - e.g. Gamma, Exponential (Marshall-Palmer) distributions

$$N_x(D_x) = N_{0x}D_x^m \exp(-L_xD_x)$$

• Negative exponential distribution when $\mu = 0$

- □ Hail model representation
 - Can substantially impact precipitation
 - Affect dynamical features within the cloud
- Evaluation of new hail parameterization using observational data in Belgium
 - 32 intense convective cases (2002-2014)
- □ Observations from Wideumont radar (RMI)
 - Maximum expected hail size (Witt et al. 1998)
 - Model evaluated only at 240 km range from the radar

□ Focus on newest processes for hail production

Raindrop freezing -> Hail

UCL

Université

catholique de Louvain

- Wet Growth Process, Graupel -> Hail
- □ Can the model accurately represent surface hail?

Model Setup

6-hourly boundary conditions from ERA-Interim used to drive the COSMO4.8-CLM11

One-way nesting approach centered over Belgium
1st nest - 0.22° (~25 km) - 100×100×50 grid points
2nd nest - 0.025° (~2.8 km) -192×175×50 grid points
deep convection resolved

□ Sensitivity tests

- Emulated 1M (N diagnosed) vs 2M MP scheme
- Exponential (EXP) vs gamma (GAM) size distributions

Université catholique de Louvain

Surface Hail Mean Size Comparison

9

Averaged mean size of hail for 32 cases

- $\hfill\square$ $2M_{GAM}$ in better agreement with radar observations compared to $2M_{EXP}$
 - $2M_{EXP}$ showed larger hailstones

Source: Maryna Lukach diameter of hailstones (mm)

Vertical Profiles of Domain-Temporal Average Particle Size

- □ Larger mean sizes overall for rain, graupel and hail categories in the 2M_{EXP} experiment.
- □ This will affect directly the rate of microphysical processes within the model.
 - e.g. raindrop freezing, wet growth process

Domain Average of Hail Amount for All Cases

Higher hail amount produced in 2M_{GAM} despite a smaller mean size compared to 2M_{EXP}

\square Larger number concentration of hail in $2M_{GAM}$

Contribution of Raindrop Freezing to Hail

Contribution of Raindrop Freezing to Hail

Contribution of Raindrop Freezing to Hail

Wet Growth Process

19

UCL

Graupel ->Hail

Ice particle located in high concentration of supercooled liquid water.
D_g > D_{wg-} graupel in wet growth regime.

Wet Growth Process

Graupel ->Hail

UCL

Ice particle located in high concentration of supercooled liquid water.
D_g > D_{wg-} graupel in wet growth regime.
Hail Content (g/m3)

Summary

- □ 2M-simulations produced significant simulated hail at the surface
 - 1M-simulations produced negligible amounts
- \square 2M_{GAM} in better agreement with radar observations compared to 2M_{EXP}
 - 2M_{EXP} showed larger hailstones
 - 2M_{GAM} overestimates (underestimates) the mean size of smaller (larger) hail particles at the surface
- □ Raindrop freezing may serve as initial hail embryos
 - Subsequently grows by MP processes? Contributing to hail amount within the storms.
- □ Wet growth process also important for further hail production,
 - however other MP processes also responsible for the greater hail amount in 2M_{GAM} at higher levels

Questions?

Acknowledgements

Université catholique de Louvain

- Jean-Pascal van Ypersele
- Philippe Marbaix
- Kwinten Van Weverberg
- Maryna Lukach
- Modeling Atmospheric Composition and Climate for the Belgian Territory (MACCBET)
- Belgian Science Policy Office (Belspo)
- □ CLM-community

Model Setup

- □ Time-split integration with a third-order Runge-Kutta scheme.
- Horizontal and vertical turbulent diffusion are calculated using a 1.5-order turbulent kinetic energy (TKE) scheme.
- Radiation was parameterized using a δ two-stream approach following Ritter and Geleyn (1992).
- □ Tiedke (1989) deep convection scheme in coarser domain
 - Reduced version of this parameterization used to represent shallow convection in the high-resolution domain

Particle Size Distribution

$$N(C_x) = N_0 C_x^{\mu m} \exp\left(-LC_x^{g m}\right)$$

Changing from size descriptor D to mass of particle (χ)

$$\boldsymbol{\mu}_m = \boldsymbol{b}_m \big(\, \boldsymbol{\mu}_d + 1 \big) - 1$$

$$g_m = b_m g_d$$

Negative Exponential

Shape parameter in gamma distribution

$$\begin{split} & \bigwedge_{\substack{i=1\\j \\ i \\ j}}^{\hat{l}} & 6 \tanh_{\hat{e}}^{\hat{e}} \mathbf{c}_{1} \left(D_{m} - D_{eq} \right) \overset{\hat{u}^{2}}{U}^{2} + 1, D_{m} \stackrel{E}{=} D_{eq} \overset{\hat{u}}{\underset{j}{i}} \\ & \underset{\hat{l}}{\overset{\hat{u}}{j}} & 30 \tanh_{\hat{e}}^{\hat{e}} \mathbf{c}_{2} \left(D_{m} - D_{eq} \right) \overset{\hat{u}^{2}}{U}^{2} + 1, D_{m} > D_{eq} \overset{\hat{u}}{\underset{p}{i}} \end{split}$$

Generalized Gamma

	Rain	snow	graupel	hail	rain	Snow	graupel	hail
γ_m μ_m γ_d μ_d a_m b_m N_0 (m) N_0 (D)	0.333 - 0.666 1 0 0.124 0.333 3.3×10^5 8 $\times 10^5$	0.526 -0.474 1 0 8.160 0.526 5.6 × 10 ⁸ 2 × 10 ⁶	0.323 - 0.677 1 0 0.190 0.323 2.5×10^5 4×10^5	$\begin{array}{c} 0.333 \\ -0.666 \\ 1 \\ 0 \\ 0.128 \\ 0.333 \\ 1.7 \times 10^{3} \\ 4 \times 10^{4} \end{array}$	0.333 Eq. (5) 1 Eq. (5) 0.124 0.333	0,526 Eq. (5) 1 Eq. (5) 8.160 0,526 -	0.323 Eq. (5) 1 Eq. (5) 0.190 0.323	0.333 Eq. (5) 1 Eq. (5) 0.128 0.333
$N_0(D)$	8×10^{6}	$3 imes 10^6$	$4 imes 10^6$	$4 imes 10^4$	-	-	-	-

Van Weverberg et al. 2014