

ICON

First experiences in operational forecasting and further plans

Günther Zängl

COSMO User Seminar, 03.03.15

ICON – <u>ICO</u>sahedral <u>N</u>onhydrostatic <u>M</u>odel

- Joint development of DWD and MPI-M (Hamburg) for NWP and climate modelling
- 2012, KIT (Karlsruhe) joined to implement the chemistry module ART (Aerosols and Reactive Trace Gases).
- About 40 active developers from atmospheric and computational sciences
- ~ 600000 lines of Fortran code

- Introduction: Main goals of the ICON project
- Grid structure, dynamical core and physics schemes
- Comparison of forecast skills with GME
- Scalability
- Selected applications of ART module
- Outlook

Max-Planck-Institut für Meteorologie

Primary development goals

- Joint project between DWD and MPI-M (Max Planck Institute for Meteorology, Hamburg)
- Unified modeling system for NWP and climate prediction in order to bundle knowledge and to maximize synergy effects
- Better conservation properties
- Flexible grid nesting in order to replace both GME (global, 20 km) and COSMO-EU (regional, 7 km) in the operational suite of DWD
- Nonhydrostatic dynamical core for capability of seamless prediction
- Scalability and efficiency on O(10⁴+) cores

Max-Planck-Institut für Meteorologie

Icosahedral grid similar to GME, but unstructured

Grid structure with refinement

Model equations, dry dynamical core

(see Zängl, G., D. Reinert, P. Ripodas, and M. Baldauf, 2014, QJRMS, in press)

$$\frac{\partial v_n}{\partial t} + (\zeta + f)v_t + \frac{\partial K}{\partial n} + w\frac{\partial v_n}{\partial z} = -c_{pd}\theta_v \frac{\partial \pi}{\partial n}$$
$$\frac{\partial w}{\partial t} + \vec{v}_h \cdot \nabla w + w\frac{\partial w}{\partial z} = -c_{pd}\theta_v \frac{\partial \pi}{\partial z} - g$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\vec{v}\rho) = 0$$

$$\frac{\partial \rho \theta_{v}}{\partial t} + \nabla \cdot (\vec{v} \rho \theta_{v}) = 0$$

v_n,w: normal/vertical velocity component ρ: density

- θ_v : Virtual potential temperature
- K: horizontal kinetic energy
- ζ : vertical vorticity component
- π : Exner function

blue: independent prognostic variables

Physics parameterizations

Process	Authors	Scheme	Origin
Radiation	Mlawer et al. (1997) Barker et al. (2002)	RRTM (later with McICA McSI)	ECHAM6/IFS
	Ritter and Geleyn (1992)	δ two-stream	GME/COSMO
Non-orographic gravity wave drag	Scinocca (2003) Orr, Bechtold et al. (2010)	wave dissipation at critical level	IFS
Sub-grid scale orographic drag	Lott and Miller (1997)	blocking, GWD	IFS
Cloud cover	Doms and Schättler (2004)	sub-grid diagnostic	GME/COSMO
	Köhler et al. (new development)	diagnostic (later prognostic) PDF	ICON
Microphysics	Doms and Schättler (2004) Seifert (2010)	prognostic: water vapor, cloud water,cloud ice, rain and snow	GME/COSMO
Convection	Tiedtke (1989) Bechthold et al. (2008)	mass-flux shallow and deep	IFS
Turbulent transfer	Raschendorfer (2001)	prognostic TKE	COSMO
	Louis (1979)	1 st order closure	GME
	Neggers, Köhler, Beljaars (2010)	EDMF-DUALM	IFS
Land	Heise and Schrodin (2002), Machulskaya, Helmert, Mironov (2008, lake)	tiled TERRA + FLAKE + multi-layer snow	GME/COSMO
	Raddatz, Knorr	JSBACH	ECHAM6

First operational configuration of ICON for NWP

- Mesh size 13 km (R3B07), 90 levels, model top at 75 km
- > 3D-Var data assimilation system taken over from GME
- Preoperational production since 12 Aug 2014
- > Operational production since 20 Jan 2015
- Forecast range: 180 h (00+12 UTC), 120 h (06+18 UTC)
- Output on native model grid and on 0.25°x 0.25° lat-lon grid

Verification results

a) analysis verification

 WMO standard verification against own analyses on 1.5°x1.5° lat-lon grid, December 2014, 12 UTC runs

b) radiosonde verification

 Verification against radiosondes (that passed the quality check of the data assimilation scheme), December 2014, 00 UTC runs

c) surface verification

 Verification against SYNOP observations, 16 Dec 2014 – 16 Jan 2015, 00 UTC runs

Many thanks to Uli Damrath and Uli Pflüger!

Mean sea-level pressure, RMSE in hPa

Wind at 925 hPa, vector-RMSE in m/s

DWC

Temperature at 700 hPa, RMSE in K

Geopotential height at 500 hPa, RMSE in m

Temperature at 700 hPa, RMSE in K

blue: GME, red: ICON, green: IFS; RV: reduction of variance

Geopotential height at 500 hPa, RMSE in m

blue: GME, red: ICON, green: IFS; RV: reduction of variance

Radiosonde verification northern hemisphere

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Geopotential and temperature

Bias, 0-48 h

RMSE, 0-48 h

Radiosonde verification northern hemisphere

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Bias, 72-168 h

RMSE, 72-168 h

Radiosonde verification northern hemisphere

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Bias, 72-168 h

RMSE, 72-168 h

Radiosonde verification southern hemisphere

Deutscher Wetterdienst 6 Geopotential and temperature Wetter und Klima aus einer Hand geopotential dashed: ICON 13L90 solid: GME 20L60 200 200 400 400 Рd 600 600 800 800 1000 1000 -20 -10 10 20 20 30 0 0 10 40 [m] [m] temperature temperature 200 200 400 400 hPa 600 600 800 800 1000 1000 -2.0 -1.0 0.0 1.0 2.0 0.0 1.0 3.0 4.0 2.0

DWD

Pdq

Pdu

Bias, 0-48 h

[K]

RMSE, 0-48 h

[K]

Radiosonde verification southern hemisphere

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Geopotential and temperature

Bias, 72-168 h

RMSE, 72-168 h

Close-up view for Antarctica

Surface verification Antarctica; blue: GME, red: ICON_{Deutscher Wetterdienst}

Wetter und Klima aus einer Hand

Thanks to Florian Prill!

- Mesh size 13 km (R3B07), 90 levels, 1-day forecast (3600 time steps)
- Full NWP physics, asynchronous output (if active) on 42 tasks
- Range: 20–360 nodes Cray XC 30, 20 cores/node, flat MPI run total runtime sub-timers

DWD

Result of first try – before fixing some hardware issues ...

total runtime sub-timers 2014-03-03 2014-03-03 runtime runtime DyCore (nh solve) output disabled DyCore comm. (nh exch) with output 1000 Physics 800 Communication (exch data) NH-solver excl. communication 500 400 300 Communication 100 200 Communication within NH-solver time (s) 400 600 960 1280 1920 2560 5200 7200 3920 400 600 960 1920 2560 3920 5200 7200 1280 MPI tasks, flat-MPI run MPI tasks, flat-MPI run

e (s)

XXL test (computed at ECMWF)

- Mesh size 5 km (~21M grid points), 90 levels, 1000 time steps
- No output (field size too large for NetCDF3, technical issues with NetCDF4)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ICON-ART

Max-Planck-Institut für Meteorologie

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Emission of Volcanic Ash

- Source strength, source height, temporal development
- Updated at every advection time step before the tracer advection
- Input file: "name" "lon("N)" "lat("E)" "active" "source strength" "source height"
- Gaussian distribution of source strength... as a function of plume height (Mastin et al. 2009), measured size distribution (Schumann et al. 2011)

B. Vogel, KIT

B. Vogel, KIT

B. Vogel, KIT

*Volkswirtschaftsdirektion des Kantons Bern, 2015

B. Vogel, KIT

Forecast of a Saharan dust outbreak

TAU_DUST

valid: 22 MAY 2014 12 UTC ... after 12 hour(s) forecast time

TAU_DUST

Summary

- Significant improvement of forecast skill over GME
- Higher flexibility thanks to grid nesting capability \rightarrow
- Higher efficiency than GME on massively parallel computer architectures
- Large range of applications in environmental modelling thanks to **ART module**

Upcoming upgrades at DWD:

- Q1-Q3: Tile approach for TERRA
- Q2/Q3: Activation of nested domain over Europe ("ICON-EU")
- Q4: First step towards ensemble data assimilation

