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Stochastic Boundary Layer Perturbations Based on Physical Information

Motivation Formulation of the surface-heating perturbations

Missing subgrid-scale variability causes systematic 5 total Hp\ PArem

errors in the representation of convective initiation. (E) = (E) + aish - Msh -V (02)en
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‘c | To improve the representation of convective initiation by ¢ = {T,q,w} Variablesto be perturbed by 7sn ® Random field with a horizontal correlation
- | Introducing perturbations to the model on the smallest the surface heating scheme length of 14 km (effective resolution 5Ax)
f}“ resolved scales based on the following processes: ( ¢2> Variances calculated in the e Constant in the vertical
- | e turbulence from surface heating (sh, this poster) sh e New random field drawn every 10 Minutes
» . . | Mellor-Yamada turbulence .

e subgrid-scale orography (Fabian Brundke's poster) . (approx. eddy turnover time)

parameterization
e cold pools (future work) | Model
® mesoscale circulations (future work) Xsh Scaling factor

e COSMO-DE with 2.8 km horizontal resolution
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NP = BN p\;‘_ w521 variance field and the E ., Fig. 2: Variation of the mean
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== Physical information determines amplitude of random perturbations. - Perturbation amplitude depends strongly on the diurnal cycle.
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Impact on Precipitation Spread

e Ensembles of 10 members started at QUTC from same Initial conditions
e Only the random seed differs between the ensemble members

The Systematic Impact: More Convection

Comparison of precipitation forecasts with COSMO reference run
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Comparison with equivalent single perturbations

e Members perturbed once at QUTC

e Perturbation structure mimicks the stochastic perturbations

e Perturbation amplitude approximately equivalent to 10 minutes of
stochastic perturbations: o(T, g, w) = 0.1 K, 1e“* kg kg*, 0.375 m s™

Stochastic perturbations | Equivalent single perturbations
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Fig. 6: Snhapshots of hourly accumulated precipitation at 12UTC, comparing radar,
reference run and one stochastically perturbed run. Adapted from Kober and Craig (2016).

Fig. 3: Comparison of
precipitation features
between two ensemble
members at 14UTC. Red
(blue) shadings indicate
precipitation in member
one (two). Green shading
Indicates overlapping
cells.

9 Contlnuous stochastlc perturbations cause faster displacement of
convective cells compared to equivalent single perturbations.
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Fig. 7: Domain integrated hourly precipitation
of a reference run, the mean of a perturbed
ensemble and the matching radar
observations. Adapted from Kober and Craig
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In a case with weak synoptic forcing, the stochastic perturbation
scheme produces more realistic precipitation amounts.
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Scale-dependent analysis of precipitation dispersion

99th percentile, stochastically perturbed 99th percentile, correlated IC perturbation
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Fig. 4: dFSSmean of an
ensemble with stochastic
perturbations introduced
at9UTC. The FSS is a
scale dependent
measure of the spatial
agreement between
precipitation forecasts
(Dey et al. 2014).
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Future Work

e Evaluation and verification of ensemble simulations in comparison/
combination with other ensemble techniques (SPPT, downscaling)

e Comparison with statistical postprocessing technigues in collaboration
with HITS group (Prof. Tillmann Gneiting)

e Evaluation of the interaction of stochastic representations of different
physical processes (see Goal and Fabian Brundke's Poster)
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Fig. 5: Evolution of the precipitation
decorrelation scale after Surcel et al. (2015) for
perturbations introduced at 9UTC. This metric
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- Results indicate an accelerated stage one of the error growth model
by Zhang et al. (2007) (see also Selz and Craig 2015).
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