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Diurnal cycle problem Boundary layer processes - General

Forecasting the diurnal cycle of precipitation in synoptic situations with Several processes contribute to the variability Increasing the small-scale variability by stochastic perturbations representing boundary layer processes improves the
weak large-scale forcing shows low skill in mesoscale NWP models: : in a convective boundary layer, eg. surface precipitation forecast (Kober&Craig, 2016).

heating (sh), flow — subgrid-scale orography
interaction (sso), cold pools (cp), mesoscale
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An approach representing surface heating has shown improved forecast skill (see conference contribution of Stephan
Rasp and Kober & Craig, 2016):
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General equation for perturbations:

Heating of surface drives turbulence in boundary layer = relevant for initiation of convection
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Fig. 1: Left: Observation of accumulated precipitation at 12UTC for 1 July 2009. Right: like left
but for COSMO-DE forecast.

B Il. Mathematical formulation
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Boundary layer processes - Subgrid-scale orography
Methods

I. Basic principle Il. Mathematical formulation
Variability due to mechanical effect of

subgrid-scale orography (SSO) on the Perturbation structure: (
atmospheric flow.

Missing small-scale variability due to boundary layer processes is one reason.

0D ) stoch _ (810 ) stoch _ Ow | Qsso 0t = tendencies of vertical velocity
Ot /sso Ot / sso ot ' dt Tlsso w perturbed
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Horizontal wind  forces vertical motion w: forced vertical motion  (rgso: scaling factor 755, : random number field

leading to initiation of convection. Calculation of w™ based on internal gravity wave formalism for constant Brunt-Vaiséla frequency N in an incompressible medium (Gill, 1982).

: * depends on SSO parameters (orientation ¢, shape slope o standard deviation of height [iss,), horizontal wind (u’,v") in the rotated
COSMO-DE model configurat 2.8 k w : 550, 550, ss0) !
model configuration m SSO coordinates and stability [V (see Baines & Palmer (1990) for details about SSO parameters):

horizontal resolution).

2 < 2 i . . . . / /
w* < IN“-vertical propagation possible: Wy = wo(k7 [,u',v ,,usso)

w* = wq - cos(kx + ly + mz — wt) k = k(0sso; Isso)
Fig. 3: Definition of the subgrid-scale orography parameters in rotated /
coordinates (z’, '), describing a bell-shaped mountain. — (0_8307 Msso, ’Ysso)

w? > N?- amplitude decays with height: = m(k,I, NQ)
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w* = wo - e~ 7* . cos(kx + ly — wt) —m

Results

l. Perturbations Il. Vertical velocity IV. Precipitation
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— Perturbations lead to increased variability of U S At °  Weak synoptic forcing on 1 July 2009:
integrated vertical velocity with larger impact | ’ X9

over mountainous areas

— L arger impact of scheme over increased orographic variations.

) o —>»Ensemble with 10 members seems to be sufficient to capture mean precipitaton rates.
lll. Specific humidity

1 Fig. 6: " _ry;/ ' | _ = =>Root mean squared error (RMSE) slightly improved.
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Differences R P L R0 P . T .
between a N O e XY o =»Overall small impact on average precipitation rates compared to perturbation of other

perturbed FERTol SRS IO e U . variables like temperature and moisture (see conference contribution Stephan Rasp and
and s & Kober & Craig, 2016) for 1 July 2009.
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Fig. 4: Horizontal structure of perturbations =3;* - 11sso - W™ for specific Ensemble mean 10 members

o = 1 at model level 45 (=~300m AGL) for 1 July 2009 (top: - humidity for . . .
3UTC, bottom: 13UTC). Grey shading marks areas where _ 1LjJuIIyI2)(/)09 Weak synoptic forcmg on 1 June 2014

orographic variations are negligible. (Northern —>Larger impact on precipitation Compared to impact
Alps). of scheme on 1 July 20009.
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Outlook

Develop and implement stochastic perturbation schemes, representing small-scale variability due to cold pools and mesoscale
circulations:

Cold POOo s . Basic principle Il. Mathematical formulation

Precipitating deep convective cells cool the air via evaporation
which can lead to density currents at surface = alters the stability
of the boundary layer and can trigger secondary cells

(9<I>)St0€h _ _ . . f(vel, lt) tendencies of moisture

Perturbation structure: (W = q perturbed

cp

Qcp @ scaling factor 7)., : random number field  wvel : propagation velocity of cold pool [t: lifetime of cold pool

Mesoscale circulations | gasic principle Il. Mathematical formulation

tendencies of temperature
stoch oP

57 T Qme " Mme - f(h, 850) - F((P2)) = T vertical velocity w and

moisture q perturbed

Mountain circulations due to differential heating and other | perturbation structure: (8_(1))
processes can lead to convergence of air =»relevant for initiation ot

of convection ®: resolved variable T, w, q and fluxes (®2) . scaling factor 7),,,.: random number field h: resolved orography sso: subgrid-scale orography
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