

# Volcanic Ash and Radiation within ICON-ART

Carolin Walter<sup>1</sup>, Daniel Rieger<sup>1</sup>, Philipp Gasch<sup>1</sup>, Jochen Förstner<sup>2</sup>, and Bernhard Vogel<sup>1</sup>

<sup>1</sup>Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany <sup>2</sup>Deutscher Wetterdienst, Offenbach, Germany

Institute of Meteorology and Climate Research





### **Simulation of Radiative Effects**



- Ash radiation interactions:
- → climate, weather, plume dynamics



### **Simulation of Radiative Effects**



- Ash radiation interactions:
- → climate, weather, plume dynamics
- Comparison with observations:
- → Satellite, LIDAR, Ceilometer, AERONET





### **Implementation of Radiation Interactions**





#### **Mie Calculations**







# IMPACT ON THERMODYNAMICS



# **Increased Source Strength E100**



16.4.2010 12 UTC





### Varied Source Strength















# COMPARISON WITH OBSERVATIONS



Most forward operators use a lidar ratio S to obtain the backscatter

$$\beta(\lambda) = \frac{\alpha(\lambda)}{S}$$

- $\rightarrow$  Direct calculation of the backscatter is preferable
- $\rightarrow$  Lidar equation:

$$P(z) = \beta(z) \cdot \exp(-2 \cdot \int_0^z \alpha(z') dz')$$





# Summary



Implementation of volcanic ash radiation interactions into ICON-ART

- Impact on plume dynamics
  - Heating in the upper part of the plume with cooling above
  - Induced secondary circulation
  - Lifted center of mass

Simulations of the attenuated backscatter and measurements fit good