Symmetric 4th Order Horizontal Schemes In COSMO_5.0:

Computational Performance and Spectral Properties at Resolutions 50 km to 1 km

Jack Ogaja and <u>Andreas Will</u>

The support of M. Baldauf and U. Schättler is in particular acknowledged!

Brandenburg University of Technology Cottbus - Senftenberg

COSMO General Meeting, WG DYNNUM, Wrocław, 7. September 2015

Outline

b-tu Brandenburg University of Technology

- 1. Introduction
- 2. Advection schemes and implementation
 - 1. Phase, Amplitude and Alias error
 - 2. Accuracy and stability for different RK schemes
- 3. Flow over mountain: vertical flux,
- 4. Atmosphere at rest: convergence and stability
- 5. Climate simulation: stability and precipitation
- 6. Effective resolution: theoretical and real case results
- 7. Implementation
 - 1. New namelist parameters
 - 2. New routines
 - 3. Implementation status and plans

botu Brandenburg University of Technology Cottbus

:

1. The advection schemes

$$\begin{aligned} AdvW4 &:= u(b_1\overline{\delta_\lambda q}^\lambda + b_2\overline{\delta_\lambda q}^{3\lambda}) + (b_1\overline{q}^\lambda + b_2\overline{q}^{3\lambda})\delta_\lambda u \\ AdvC4 & (\mathbf{v_h}\cdot\nabla_h u)^{On} := u\delta_\lambda^{On}u + \overline{v}^{O2,\phi}{}^{O2,\lambda}\delta_\phi^{On}u \\ AdvN4 & (\mathbf{v_h}\cdot\nabla_h u)^{On} := u\delta_\lambda^{On}u + \overline{v}^{On,\phi}{}^{On,\lambda}\delta_\phi^{On}u \\ & \left\{ \begin{array}{c} (\mathbf{v_h}\cdot\nabla_h u)_{i+\frac{1}{2},j} := & \frac{9}{8}\overline{u}^{O4,\lambda}\overline{\delta_\lambda u}^\lambda - \frac{1}{8}\overline{u}^{O4,\lambda}\overline{\delta_{3\lambda} u}^{3\lambda} \\ & + \frac{9}{8}\overline{v}^{O4,\lambda}\overline{\delta_\phi u}^\phi - \frac{1}{8}\overline{v}^{O4,\lambda}\overline{\delta_{3\lambda} v}^{3\lambda} \\ & \left\{ \begin{array}{c} (\mathbf{v_h}\cdot\nabla_h v)_{i,j+\frac{1}{2}} := & \frac{9}{8}\overline{u}^{O4,\phi}\overline{\delta_\lambda v}^\lambda - \frac{1}{8}\overline{u}^{O4,\phi}\overline{\delta_{3\lambda} v}^{3\lambda} \\ & + \frac{9}{8}\overline{v}^{O4,\phi}\overline{\delta_\phi v}^\phi - \frac{1}{8}\overline{v}^{O4,\phi}\overline{\delta_{3\phi} v}^{3\phi} \end{array} \right. \end{aligned}$$

2. Implementation and Tests

2.1 New namelist parameters

I_higher_order_sslogicalIf .TRUE., 4th order interpolation is used for all schemes but advectionladv_symmetriclogicalIf .TRUE., symmetric formulation of advection is used.

2.2 Implementation and testing procedure

1. COSMO_4.24_hos : Implementation finished Europe // 0165 // ERAInt // 1979-1999: advC3p2d0.25, advS4p4d0.25, advS4p4d0.00, advN4p4d0.25 Time to solution: HPSY(advS4p4)= 2x HPSY(advC3p2)

2. COSMO_5.0_hos : Implementation finished Europe | 0.44 | NCEP, ERAInt | 2000-2004 Europe | 0.165, 0.11, 0.0625 | 0.44 | 2000-2001 COSMO-DE | 0.044, 0.025 | 0.0625 | 2000-2001 advC3p2d0.25, advS4p4d0.00, I_filter_oro=.TRUE./.FALSE. Time to solution: HPSY(advS4p4)= HPSY(advC3p2)

2. COSMO_5.3: Implementation ongoing Test simulations in weather and climate mode planned in 4-8 2017.

Ad-hoc implementation in COSMO_4.24 (Ogaja & Will 2016) 100% longer time to solution with S4p4v2d0.00

Code profiling and trace analysis

Additional time to solution increased due to additional boundary exchange

b-tu Brandenburg University of Technolog

$$S4^* := \frac{9}{8} \overline{u}^{O4,\lambda} \delta_{\lambda} u^{\lambda} - \frac{1}{8} \overline{u}^{O4,\lambda} \delta_{3\lambda} u^{3\lambda} + \frac{9}{8} \overline{v}^{O4,\phi} \delta_{\phi} u^{\lambda} - \frac{1}{8} \overline{v}^{O4,\phi} \delta_{3\phi} u^{3\lambda}$$

- 4th order explicite interpolation and differencing require 2 neigbour points
- Symmetric advection discretisation requires an additional interpolation after advection computation. This interpolation requires the advection at neighbouring points
- A standard discretisation approach leads to an introduction of an additional boundary exchange.

$$S4^* := \frac{9}{8} \overline{\overline{u}}^{O4,\lambda} \delta_{\lambda} \overline{u}^{\lambda} - \frac{1}{8} \overline{\overline{u}}^{O4,\lambda} \delta_{3\lambda} \overline{u}^{3\lambda} + \frac{9}{8} \overline{\overline{v}}^{O4,\phi} \delta_{\phi} \overline{u}^{\lambda} - \frac{1}{8} \overline{\overline{v}}^{O4,\phi} \delta_{3\phi} \overline{u}^{3\lambda}$$

- On staggered grid the target point is located between the source points. Thus, each discretisation requires the source variable at i-2, i-1, i and i+1 position.
- This assymetry opens the opportunity of optimisation of the discretisation.
- Theoretically, the computation of maximum number of points in first interpolation and differencing allows to compute the second interpolation without an additional boundary exchange

```
D0 k=kstart n. kend n
D0 k=kstart_n, kend_n
! a): calculate udu/dx, udv/dx, udp/dx, udt/dx at 'natural' grid-points
!-----
D0 j=jstart_n, jend_n
D0 i=istart_n-2, iend_n+1
    cd_4order_1(i,j) = dlam_dt(i,j,k) * eddlon * ( q(i+1,j,k) - q(i,j,k) )
    cd_4order_3(i,j) = dlam_dt(i,j,k) * frac_1_3 * eddlon * ( q(i+2,j,k) - q(i-1,j,k) )
END D0
END D0
! b): interpolate udu/dx, udv/dx, udp/dx, udt/dx to 'prognostic' grid-points
```


$$S4^* := \frac{9}{8} \overline{u}^{O4,\lambda} \delta_{\lambda} u^{\lambda} - \frac{1}{8} \overline{\overline{u}^{O4,\lambda}} \delta_{3\lambda} u^{3\lambda} + \frac{9}{8} \overline{\overline{v}}^{O4,\phi} \delta_{\phi} u^{\lambda} - \frac{1}{8} \overline{\overline{v}}^{O4,\phi} \delta_{3\phi} u^{3\lambda}$$

• This is illustrated by the following example:

```
D0 k=kstart_n, kend_n
```

```
! a): calculate udu/dx, udv/dx, udp/dx, udt/dx at 'natural' grid-points
D0 j=jstart_n, jend_n
 DO i=istart n-2, iend n+1
   cd_4order_1(i,j) = dlam_dt(i,j,k) * eddlon * (q(i+1,j,k) - q(i,j,k))
   cd_4order_3(i,j) = dlam_dt(i,j,k) * frac_1_3 * eddlon * (q(i+2,j,k) - q(i-1,j,k))
 END DO
END DO
! b): interpolate udu/dx, udv/dx, udp/dx, udt/dx to 'prognostic' grid-points
D0 j=jstart_n, jend_n
 DO i=istart n, iend n
    advtend = - frac_1_16 * ( - ( cd_4order_3(i+1,j) + cd_4order_3(i-2,j) ) &
               + 9.0 ireals * ( cd 4order 1(i,j) + cd 4order 1(i-1,j) ) )
     &
   tend(i,i,k) = tend(i,i,k) + advtend
 END DO
END DO
```

END DO

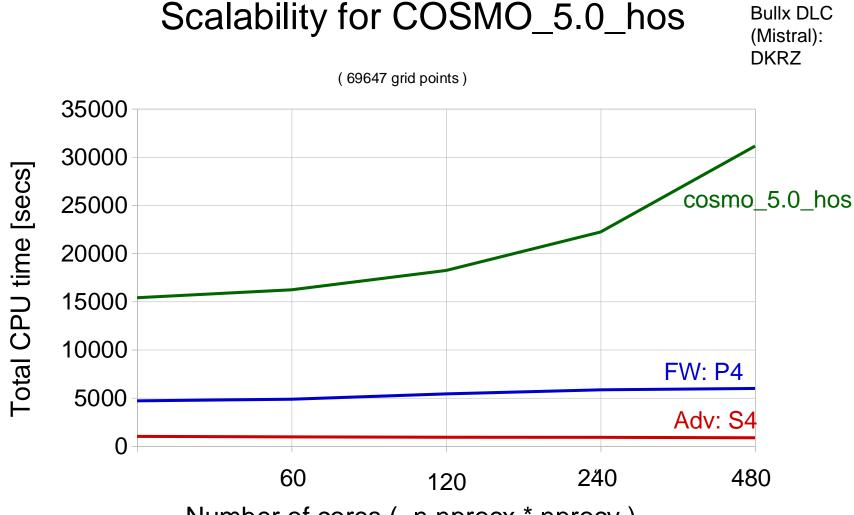
• Each term needs an appropriate definition of the subdomain boundaries !!!

Ad-hoc implementation in COSMO_4.24 (Ogaja & Will 2016) 100% longer time to solution with S4p4v2d0.00

Code profiling and trace analysis

b-tu Brandenburg University of Technolog

Optimisation of AdvS4 implementation


Additional boundary exchange (in symmetric advection) removed Number of variables allocated reduced.

Final code profiling and trace analysis

b-tu Brandenburg University of Technology

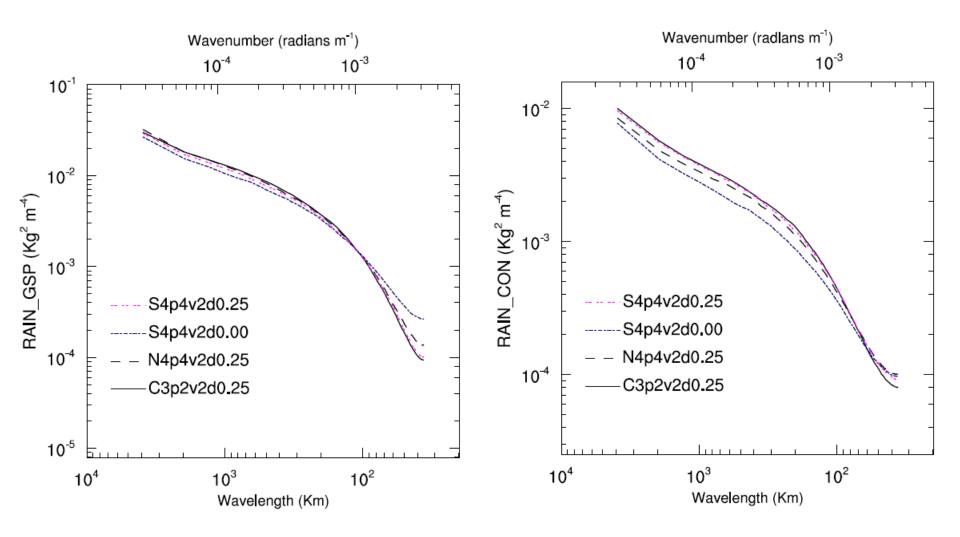
Number of cores (=n nprocx * nprocy)

3. COSMO_5.0_hos: Computational cost S4p4 versus C3p2

- 10% increase in computational time for Advection
- 3% increase in computational time for Fast-waves solver
- 1-2% increase in the total model run time

Full 4th order symmetric advection scheme without explicit horizontal diffusion reveals no difference in time to solution, cost and scalability

Higher order schmes (e.g.6) can be expected to bahave in a similar way.

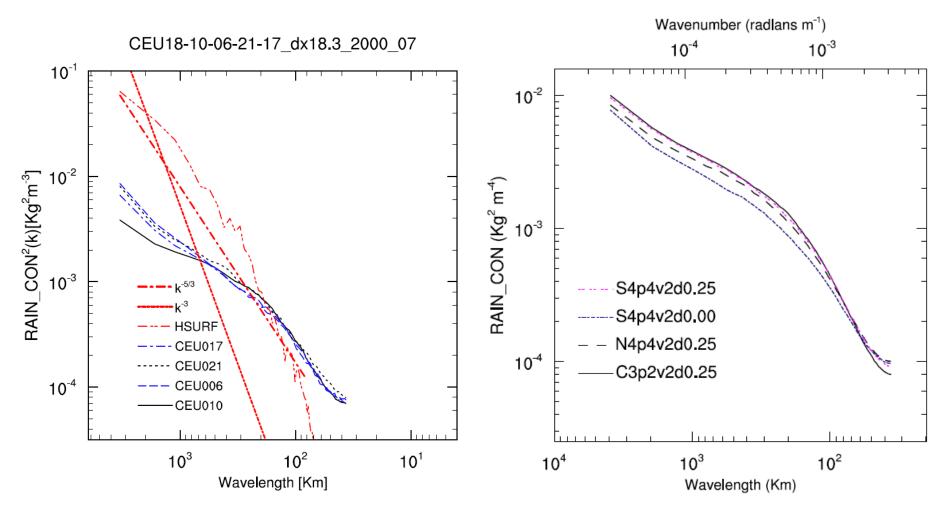

b-tu	Brandenburg University of Technolog Cottbus

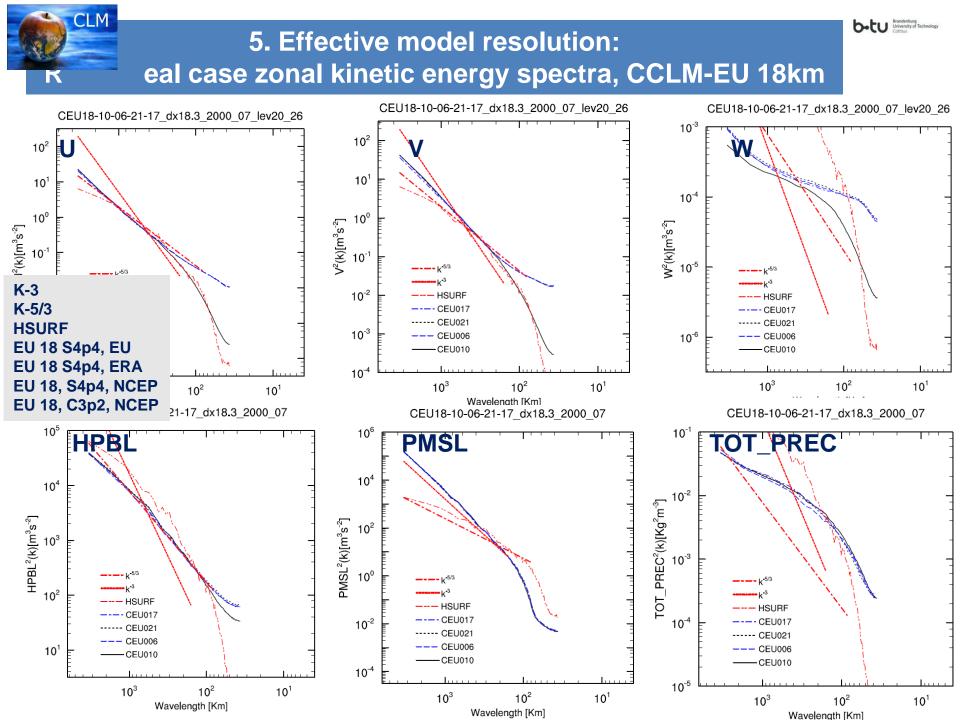
EU 50, C3p2, EU 50, S4p4 EU 50, C3p2 EU 50, S4p4 EU 18 S4p4, EU 18 S4p4, EU 18, S4p4, EU 18, C3p2,	NCEP NCEP ERAINT ERAINT EU ERA NCEP NCEP	2000-2004 ,
EU 7 S4p4, EU 7 C3p2, EU 7S4p4, EU 7 C3p2, DE 5.0 S4p4 DE 2.8 S4p4 DE 2.8 C3p2	EU50, ERA EU50, ERA EU50, NCEP EU50, NCEP EU 7 EU 7 EU 7 EU 7	

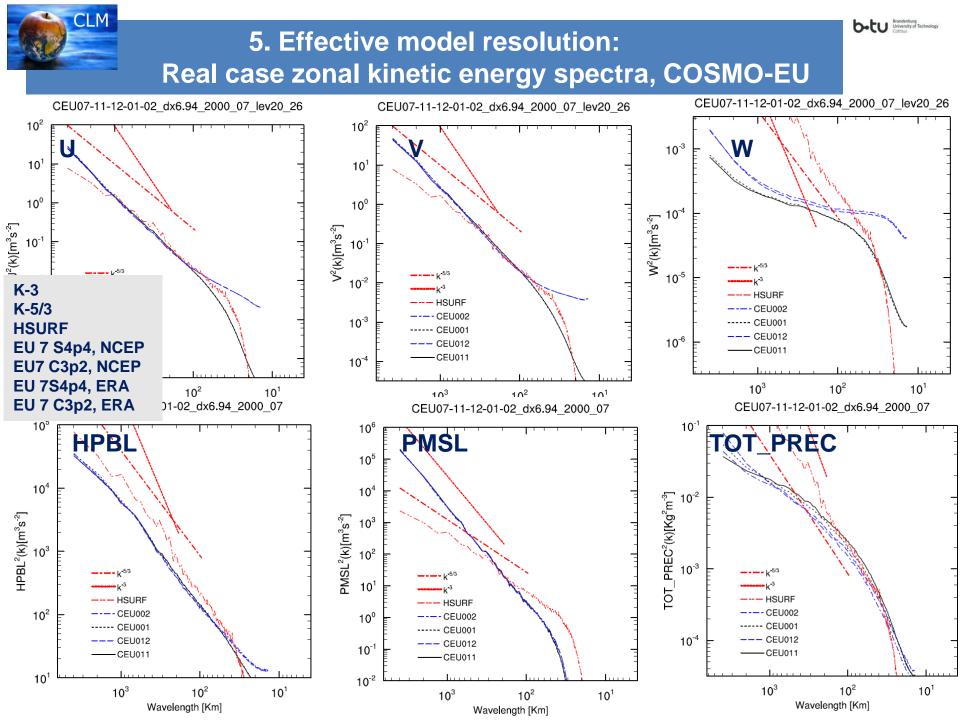
4. Real case climate simulation: Spectra of July precipitation, COSMO_4.24

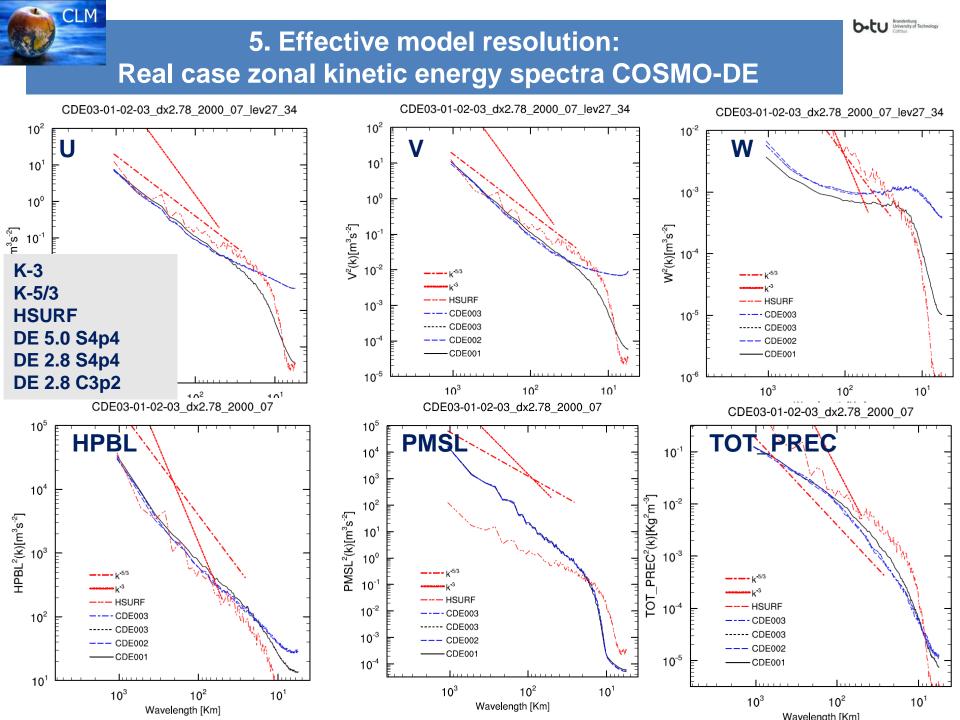
b-tu Brandenburg University of Technolog Cottbus

CLM

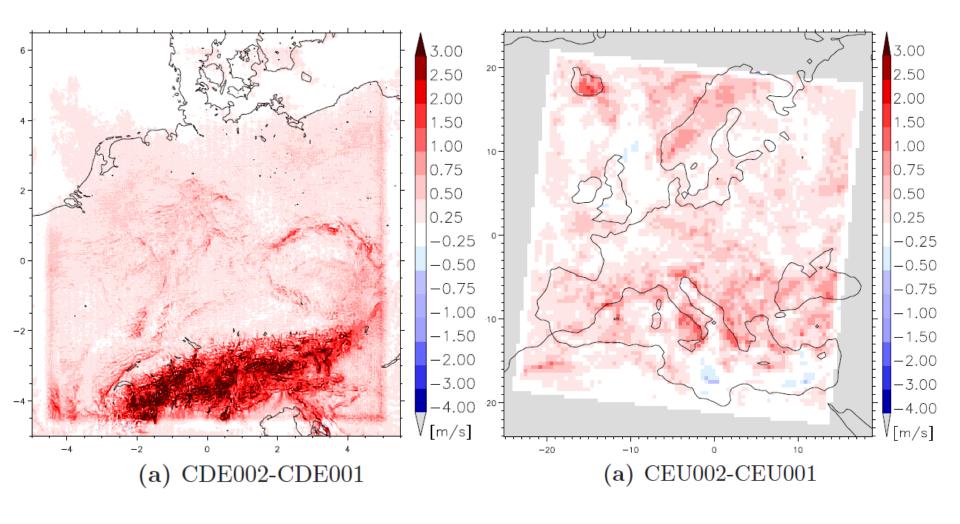



4. Real case climate simulation: Spectra of July precipitation,


COSMO_5.0

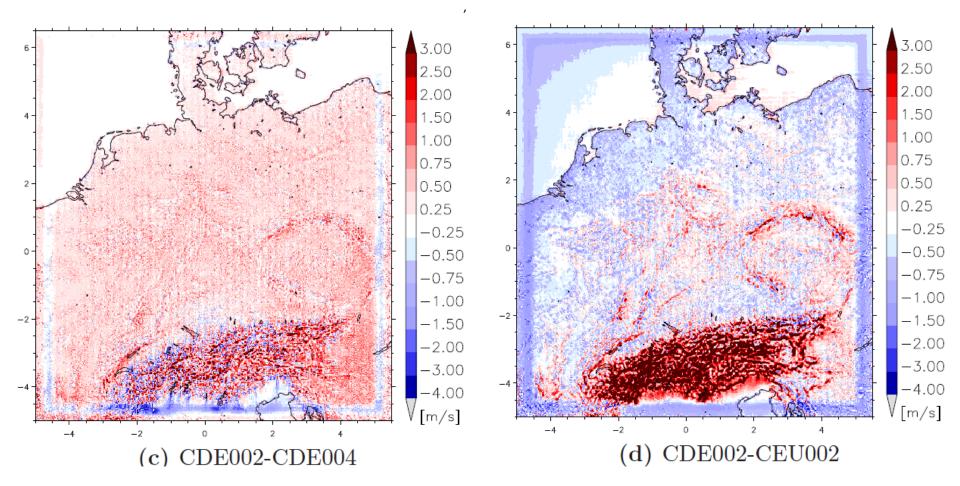

COSMO_4.24

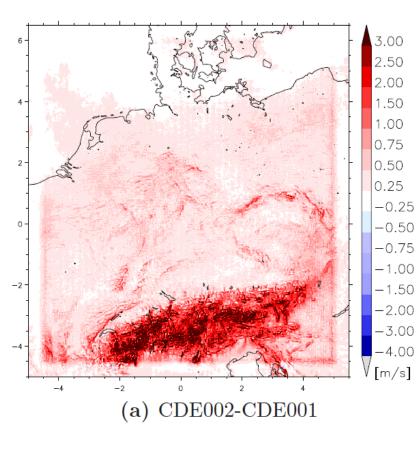
b-tu Brandenburg University of Technology Cottbus



b-tu Brandenburg University of Technology

AdvS4p4v2d0.00 – C3p2v2d0.00 COSMO-DE COSMO_EU




5.Near surface climate

AdvS4p4v2d0.00 COSMO-DE COSMO_EU 2.8km – 5km

AdvS4p4v2d0.00 – C3p2v2d0.00 COSMO-DE Interpretation:

•The deep convection parameterisation (DCP) has infinite speed. The grid scale dynamics has a finite speed.

b-tu Brandenburg University of Technolog

- Horizontal diffusion prevents small scall dynamics by damping
 DCP prevents small scale dynamics by instantaneous vertical energy transport
- The quality of dynamics is visible if the spatial transport of conserved quantities by parameterisation is not much faster than the dynamical transport

b-tu Brandenburg University of Technolog

- •Horizontal diffusion prevents small scall dynamics by damping
- DCP prevents small scale dynamics by instantaneous vertical energy transport
- the horizontal spectra exhibit , that the orography is generating a substantial part of small scale dynamics in case of diffusive numerics

Non-dissipative 4th order dynamics:

- allows simulating weather and climate without numerical diffusion at same cost and similar quality of large scale climate as the reference scheme and exhibits substantial small scale differences
- in combination with appropriate orographic forcing it improves the effective resolution by approximately a factor of two (not shown)
- it has the potential to significantly improve the physical consistency of weather and climate simulations by direct simulation of the processes

* Morinishi et al. JCP 1998, 2010; Ogaja & Will, MetZet 2016