

Waves to Weather

Project A1: "Upscale impact of diabatic processes from convective to nearhemispheric scale"

An estimation of intrinsic limits of predictability using ICON and a stochastic convection scheme

Tobias Selz, George Craig DWD-CUS Offenbach, 7.3.2017

Outline

Questions

- What is the **intrinsic limit** of **predictability** that is imposed by the convection?
- What is the **relevance** of this limit for nowadays weather prediction systems?
- How much room is there for further **improvement**?

Outline

- Introduction
- Experimental setup
- Results

Introduction

Practical and intrinsic predictability

Practical predictability

Limit of prediction with currently available models and procedures

Practical and intrinsic predictability

Practical predictability

Limit of prediction with currently available models and procedures

Day 3 NHem

Practical and intrinsic predictability

Practical predictability

Limit of prediction with currently available models and procedures

ECMWF forecast skill

Improvement: 1 forecast-day per decade

Day 7 NHem

Practical and intrinsic predictability

Practical predictability

Limit of prediction with currently available models and procedures

Intrinsic predictability

Limit of prediction with perfect procedures and knowledge of the initial state

Practical and intrinsic predictability

Practical predictability

Limit of prediction with currently available models and procedures

Intrinsic predictability

Limit of prediction with perfect procedures and knowledge of the initial state

- Quick amplification (≈ 1h) of errors at convective scale and subsequent upscale propagation sets the intrinsic limit of predictability (Lorenz 1969, Sun and Zhang, 2016)
- Estimate requires a global model with an accurate representation of convection, but CRM is too expensive
- Is a coarser resolution and a convection scheme good enoug?

Error growth case study with COSMO (Selz and Craig, 2015a+b)

2.8 km resolution, no conv-scheme

28 km resolution, Tiedtke conv.

 Conventional convection schemes do not amplify errors near the convective scale sufficiently → overconfidence

LMU

Errors in 500hPa geopot after 60h (color)

Error growth case study with COSMO (Selz and Craig, 2015a+b)

2.8 km resolution, no conv-scheme

28 km resolution, Plant-Craig stochastic conv.

Errors in 500hPa geopot after 60h (color)

28 km resolution, Tiedtke conv.

 Conventional convection schemes do not amplify errors near the convective scale sufficiently → overconfidence

LMU

• The Plant-Craig stochastic convection scheme showed **similar errors** than the convection-permitting reference run

LMU

Plant-Craig scheme: basic idea

- Closure assumption determines the **mean of a distribution**
- Clouds are drawn randomly from this distribution
- Ensemble of different realizations (microstates) consistent with the large-scale forcing can be generated

Experimental setup

Experimental - setup

- Global ICON simulations (40km resolution)
- 30 days forecast lead time
- 12 recent cases (1st of each month in 2016)

LMU

- Plant-Craig convection scheme to estimate convective-scale uncertainty
- IFS ensemble (50 members) as reference for current forecasting abilities

Results

Example: 1 Nov 2016, 01UT, Eastern North Pacific

DWD-CUS, Offenbach, 7.3.2017 – tobias.selz@lmu.de - 19

Example: 1 Nov 2016, 01UT, Eastern North Pacific

DWD-CUS, Offenbach, 7.3.2017 – tobias.selz@lmu.de - 20

Example: 1 Nov 2016-run, 300 hPa geopotential

- Only mid-latitudes (40°-60°)
- Average over all 12 cases
- Average over both hemispheres

- Only mid-latitudes (40°-60°)
- Average over all 12 cases
- Average over both hemispheres

Plant-Craig-Ensemble

- Only mid-latitudes (40°-60°)
- Average over all 12 cases
- Average over both hemispheres

• IFS initial condition uncertainty compares to 3 days of upscale error growth

- IFS initial condition uncertainty compares to 3 days of upscale error growth
- IFS error grows faster (inflation by singular vectors and SPPT)

- IFS initial condition uncertainty compares to 3 days of upscale error growth
- IFS error grows faster (inflation by singular vectors and SPPT)

- IFS initial condition uncertainty compares to 3 days of upscale error growth
- IFS error grows faster (inflation by singular vectors and SPPT)
- Time gap extends to ca.
 5-6 days

Predictability time from 75% threshold

Predictability time from 75% threshold

Predictability time from 75% threshold

Tiedtke-ensemble for comparison

- Tiedtke scheme gives longer intrinsic predictability estimates (overconfidence)
- Difference gets smaller for large modes and long predictability times

Conclusions

- Upscale propagation time from convective scale to planetary scale has been estimated to around 15-20 days
- The error growth in the PC-ensemble estimates the intrinsic predictability limit since predictability of convection cannot be extended beyond its intrinsic limit of O(10 hours)
- Forecasts of current ECMWF forecasting system can be improved by 5-6 days for the largest scales:
 - 3 days through perfecting the initial conditions
 - 2-3 days through perfecting the model (?)
- The **Tiedtke** convection scheme **overestimates** the intrinsic predictability at Mesoscale and synoptic scale but not (much) at planetary scale

Generalization of pairwise error measures for an ensemble

Difference Total Energy

$$(u_{1}-u_{2})^{2} \longrightarrow \frac{1}{N^{2}-N} \sum_{i \neq j}^{N} (u_{i}-u_{j})^{2}$$
$$= \frac{2}{N-1} \sum_{i}^{N} (u_{i}-\overline{u})^{2} = 2 \cdot Var(u)$$

$$DTE = Var(u) + Var(v) + \frac{C_p}{T_r} Var(T)$$

Error Kinetic Energy

$$\frac{1}{2} |\widetilde{u_1} - \widetilde{u_2}|^2 \longrightarrow \frac{1}{N^2 - N} \sum_{i \neq j} \frac{1}{2} |\widetilde{u_i} - \widetilde{u_j}|^2$$
$$= \frac{1}{N - 1} \sum_i |\widetilde{u_i} - \overline{\widetilde{u}}|^2 = \frac{N}{N - 1} \left(\frac{1}{N} \sum_i |\widetilde{u_i}|^2 - \left|\frac{1}{N} \sum_i \widetilde{u_i}\right|^2\right)$$