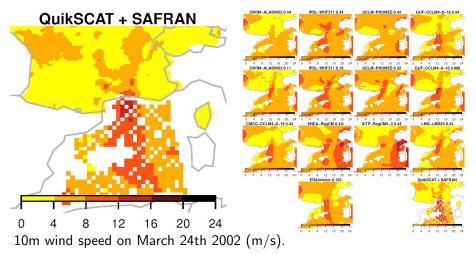
Idealized Mistral Simulations with CCLM

Anika Obermann-Hellhund, Bodo Ahrens


Goethe University Frankfurt

08.03.2017

Mistral in RCMs

- Tendency to be simulated too far in the West
- Too low wind speeds

Bias (mean over 9 years)

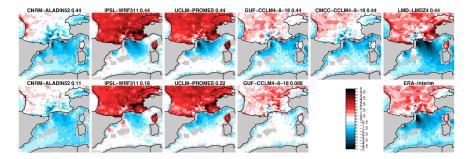
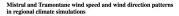



Fig. 10 Wind speed bias (m/s) for M/T days

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Stronger bias at borders of flow
- clockwise rotated wind

Anika Obermann¹ · Sophie Bastin² · Sophie Belamari³ · Dario Conte⁴ · Miguel Angel Gaertner⁵ · Laurent Li⁶ · Bodo Ahrens¹

Influence of Charnock $z_0 = \frac{\alpha}{\rho} u_*^2$

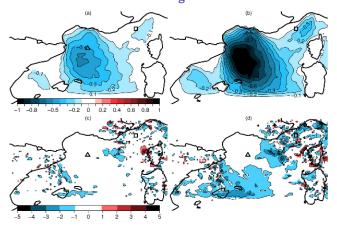


Figure 4. 10 m wind speed bias $[ms^{-1}]$ (**a**, **b**) and 10 m wind direction bias $[\circ]$ (**c**, **d**) for $\alpha = 0.025$ (**a**, **c**) and $\alpha = 0.05$ (**b**, **d**) with respect to reference ($\alpha = 0.0123$). Locations of Lion (triangle) and Azur (square) buoys.

Higher $\alpha \rightarrow$ lower wind speed, counter-clockwise rotation

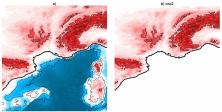
Adv. Sci. Res., 13, 107–112, 2016 www.adv.sci-res.net/13/107/2016/ doi:10.51944as:13:107-2016 @ Author(s) 2016. CC Attribution 3.0 License. Advances in Science & Research Open Access Proceedings

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Influence of sea surface roughness length parameterization on Mistral and Tramontane simulations

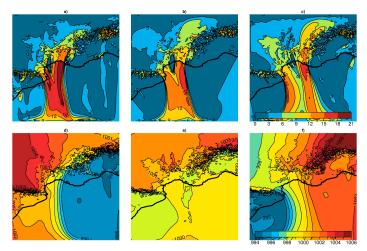
Anika Obermann, Benedikt Edelmann, and Bodo Ahrens

Idealized Simulations

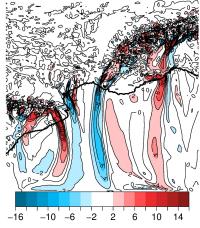

Simulating idealized cases with the COSMO-model (draft version)

Ulrich Blahak

January 13, 2015


- constant inflow boundary conditions: v = -5m/s (wind from north)
- open boundaries at east and west
- Coriolis force in f-plane aproximation (f = 2 sin 45°)

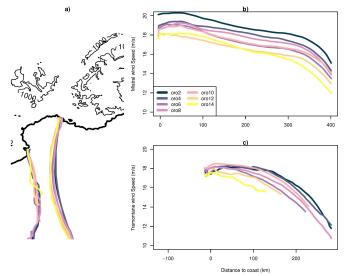
- 601×601 grid points, $10\times10^{\circ}$ domain
- Z0=0.01 m, no SSO
- 14 days simulation, use day 12-14 for evaluation


a) original Orographyb) only continent

Influence of Coriolis Force

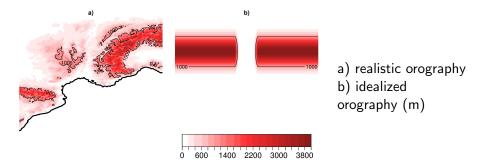
Mean wind speed (m/s) and mean sea level pressure (hPa) for simulations with Coriolis force (left), without Coriolis force (middle) and with negative Coriolis force (right).

Smoothing the Orography



Change in wind speed (m/s) when orography is smoothed from n = 2to n = 14.

- Smoothed by linear interpolation to a coarser grid spacing and back
- *n*-times coarser grid spacing simulations named oron
- Other simulations show similar patterns with less strong differences

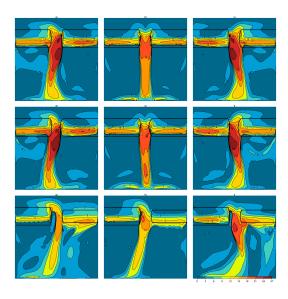

・ロット 全部 マート・ キャー

Smoothing the Orography

a) 20point smoothed location of wind speed maximum for smoothed orographies. b) and c) Wind speed at these locations.

Idealized Orography

- Land surface
- Gaussian shaped hills


- Hill height
- Hill standard deviation

(日)、

э

Valley width

Idealized Orography

Wind speed for hills with equal shape (upper row), a rounder right hill (middle), and a smaller right hill (lower row) with (left), without (middle) and negative Coriolis force (right).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Idealized Orography

50point smoothed location of wind speed maximum, 1000 m isolines.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions

- Orography, Charnock parameterization and Coriolis force influence Mistral wind pattern
- Smoothing of orography \Rightarrow
 - flow moves to the West
 - lower wind speeds
- $\bullet \ \alpha$ influences wind speed and direction over Mediterranean Sea
- Hill height, shape and valleys in the mountains influence area of main flow in idealized simulations