A modified formulation for groundwater runoff in TERRA_ML

Linda Schlemmer, Lukas Strebel, Michael Keller, Daniel Lüthi, Christoph Schär

2017-03-08

Atmospheric and Climate Science

Motivation

- Large biases in summer temperatures linked to drying of the soil

JJA T_{2m} bias EURO-CORDEX (Kotlarski, et al. 2014)

EURO-CORDEX annual cycle of latent heat

flux (Davin et al. 2016)

2017-03-08

Richards Equation

Flux divergence gives local drying/moistening:

$$\frac{\partial \theta}{\partial t} = \frac{1}{\rho_w} \frac{\partial F}{\partial z}$$

soil water flux F:

$$F = -\rho_{w} \cdot \left[-\frac{D(\theta)}{\partial z} + K(\theta) \right]$$

- θ : volumetric water content [m m⁻¹]
- D: hydraulic diffusivity
- K: hydraulic conductivity

Richards Equation

Flux divergence gives local drying/moistening:

$$\frac{\partial \theta}{\partial t} = \frac{1}{\rho_w} \frac{\partial F}{\partial z}$$

soil water flux F:

$$F = -\rho_{w} \cdot \left[-\frac{D(\theta)}{\partial z} + K(\theta) \right]$$

- $\label{eq:entropy} \begin{array}{l} \theta : \text{volumetric water content} \\ [\text{m}\,\text{m}^{-1}] \end{array}$
- D: hydraulic diffusivity
- K: hydraulic conductivity

Drainage as lower boundary condition

- water leaves the soil \Rightarrow no groundwater can build up
- drying of the soil during summertime

Drainage as lower boundary condition

- water leaves the soil \Rightarrow no groundwater can build up
- drying of the soil during summertime

Drainage as lower boundary condition

- water leaves the soil \Rightarrow no groundwater can build up
- drying of the soil during summertime

soil water flux F:

$$F = -\rho_{w} \cdot \left[-\frac{D(\theta)}{\partial z} + K(\theta) \right]$$

$$K(\theta) = K_0 \exp\left[K_1 \frac{\eta - \overline{\theta}}{\eta - \alpha}\right]; \ K_1 < 0$$

 $\eta:$ porosity, $\alpha:$ air dryness point

 $K \to K_0$ for $\theta \to \eta$ flux increases for wet soil

Runoff from ground water: Q

$$Q = \gamma \cdot K_0(z) \cdot S_{oro} \cdot h_{wt}$$

Slope parameter Soro

$$Q = \gamma \cdot K_0 \cdot \frac{S_{oro}}{S_{oro}} \cdot h_{wt}$$

Computed from GLOBE dataset

Computed on $0.01^{\circ} \times 0.01^{\circ} grid$, then averaged over coarse grid box

minimum value of 0.001 (=1%) to enable runoff in flat areas

Slope parameter Soro

$$Q = \gamma \cdot K_0 \cdot \frac{S_{oro}}{S_{oro}} \cdot h_{wt}$$

Computed from GLOBE dataset

Computed on $0.01^{\circ} \times 0.01^{\circ} grid$, then averaged over coarse grid box

minimum value of 0.001 (=1%) to enable runoff in flat areas

Slope parameter S_{oro}

S_ORO

Computed from GLOBE dataset

Computed on $0.01^{\circ} \times 0.01^{\circ}$ grid, then averaged over coarse grid box

minimum value of 0.001 (=1%) to enable runoff in flat areas

2 km

Continuous function for water table depth

Water table depth h_{wt}

$$Q = \gamma \cdot K_0 \cdot S_{oro} \cdot h_{wt}$$

$$h_{wt} = \Delta z(k) rac{ heta(k) - heta(k-1)}{\eta - heta(k-1)}$$

Tests

Tests, stand-alone single-column model

Tests

Tests, stand-alone single-column model

Tests

Tests, stand-alone single-column model

2017-03-08

COSMO User Seminar

Implementation into COSMO CLM

- COSMO5.0_CLM6
- CORDEX-EU 0.44° dt=300 s, ERAInterim driven
- Tegen Aerosol Climatology
- 1979-1985 (1981-1985 for evaluation)
- 10 soil layers, down to 11.5 m, 9 active layers (larger dynamical range)

Implementation into COSMO CLM

- COSMO5.0_CLM6
- CORDEX-EU 0.44° dt=300 s, ERAInterim driven
- Tegen Aerosol Climatology
- 1979-1985 (1981-1985 for evaluation)
- 10 soil layers, down to 11.5 m, 9 active layers (larger dynamical range)
- Decharme formulation for hydraulic conductivity: K₀(z)
 Decharme et al. (2006) (Jürgen Helmert), only in modified
 TERRA_ML

$$K_0(kso) = K_{0,default} \cdot \exp(-2.0 \cdot (z(kso) - rootdp))$$

rootdp: root depth

Implementation into COSMO CLM

- COSMO5.0_CLM6
- CORDEX-EU 0.44° dt=300 s, ERAInterim driven
- Tegen Aerosol Climatology
- 1979-1985 (1981-1985 for evaluation)
- 10 soil layers, down to 11.5 m, 9 active layers (larger dynamical range)
- Decharme formulation for hydraulic conductivity: K₀(z)
 Decharme et al. (2006) (Jürgen Helmert), only in modified
 TERRA_ML

$$K_0(kso) = K_{0,default} \cdot \exp(-2.0 \cdot (z(kso) - rootdp))$$

rootdp: root depth

• New bare soil evaporation (itype_evsl=4) (Jan-Peter Schulz)

Implementation

7-year simulation @50 km, sim-EOBS DEFAULT (callibrated) MODIF

MODIFIED (not callibrated)

Seasonal T_2M bias ctl_call (degC), 1981->1985

^{-2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8}

Implementation

7-year simulation @50 km, sim-EOBS DEFAULT (callibrated) MOD

Seasonal T_2M bias ctl_call (degC), 1981->1985

^{-28 -24 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8}

MODIFIED (not callibrated)

Seasonal T_2M bias mod_soilmod_gamma_long (degC), 1981->1985

28 24 2 16 12 08 04 0 04 08 12 16 2 24 28

Implementation

7-year simulation @50 km, sim-EOBS DEFAULT (callibrated) MODIFIED (not callibrated)

Seasonal T_2M bias ctl_call (

-2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4

Seasonal T_2M diff mod_soilmod_gamma_long-ctl_call_tegen (degC), 1981->1985

oilmod_gamma_long (degC), 1981->1985

2017-03-08

7-year simulation \longrightarrow 29-year simulation @50 km

MODIFIED (not callibrated) Seasonal T_2M bias mod_soilmod_gamma_long (degC), 1981->1985

MODIFIED (not callibrated) Seasonal T_2M bias mod_soilmod_gamma_long (degC), 1981->2007

1.2 24 28

2017-03-08

Water-table depth

Water-table depth

2017-03-08

Elevation-dependence of soil water content

Soil water content binned by elevation of terrain; Alpine (AL) region

DEFAULT

MODIFIED

Soil-water content increases with height in the default version, whereas it decreases in the modified formulation

2017-03-08

Resolution, Scale-Dependence

Slope parameter S_{oro} that determines ground water runoff

Resolution

12 km simulation, Oct 2006-Oct 2007, ERAI-driven

Water-table depth

12 km simulation

June

Water-table depth

12 km simulation

2 km simulation

June

Resolution

Comparison to 24 stations over Switzerland

- Developed a new runoff formulation
- Both idealized and climate simulations show improvements

- Developed a new runoff formulation
- Both idealized and climate simulations show improvements
- CCLM in combination with soil model not callibrated yet
- validation (Lindenberg, Fauga Mauzac)

- Developed a new runoff formulation
- Both idealized and climate simulations show improvements
- CCLM in combination with soil model not callibrated yet
- validation (Lindenberg, Fauga Mauzac)
- Simulations $\Delta x{=}50~\text{km}$ \Rightarrow $\Delta x{=}12~\text{km}$ \Rightarrow $\Delta x{=}2~\text{km}$ show little impact of the scale of S_{\it oro}

EVSL_4 Seasonal T_2M diff ctLold_evsl4-ctl (degC), 1981->1985

Validation, Lindenberg (Berlin), 2014

Validation, Fauga Mauzac (Toulouse, Southern France), 2010

7-year simulation @50 km, budget DEFAULT

MODIFIED

7-year simulation @50 km, budget DEFAULT MODIFIED

soil-water budget closes well for both model versions annual cycle of ground runoff

2017-03-08

Latent heat flux JJA

DEFAULT

JJA

MODIFIED

JJA

Latent heat flux DJF

DEFAULT

DJF

MODIFIED

DJF

Parameters K and D

