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Motivation

http://www.spectator.co.uk/features/8959941/whats-wrong-with-the-met-office/

http://www.spectator.co.uk/features/8959941/whats-wrong-with-the-met-office/
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Probabilistic forecasts

Probabilistic forecasts, i.e., forecasts in the form of probability
distributions over future quantities or events,

I provide information about inherent uncertainty

I allow for optimal decision making by obtaining deterministic
forecasts as target functionals (mean, quantiles, . . . ) of the
predictive distributions

I have become increasingly popular across disciplines:
meteorology, hydrology, seismology, economics, finance,
demography, political science, . . .



Probabilistic vs. point forecasts
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What is a good probabilistic forecast?

0 2 4 6 8 10

The goal of probabilistic forecasting is to maximize the sharpness
of the predictive distribution subject to calibration.

Gneiting, T., Balabdaoui, F. and Raftery, A. E. (2007) Probabilistic forecasts,
calibration and sharpness. Journal of the Royal Statistical Society Series B,
69, 243–268.



Evaluation of probabilistic forecasts: Proper scoring rules

A proper scoring rule is any function

S(F , y)

such that
EY∼GS(G ,Y ) ≤ EY∼GS(F ,Y )

for all F ,G ∈ F .

We consider scores to be negatively oriented penalties that
forecasters aim to minimize.

Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction,

and estimation. Journal of the American Statistical Association, 102, 359–378.



Examples

Popular examples of proper scoring rules include

I the logarithmic score

LogS(F , y) = − log(f (y)),

where f is the density of F ,

I the continuous ranked probability score

CRPS(F , y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2dz ,

where the probabilistic forecast F is represented as a CDF.
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DWD in the news 1

http://www.ksta.de/panorama/wetterdienst-verteidigt-warnungen-sote-23528436

http://www.ksta.de/panorama/wetterdienst-verteidigt-warnungen-sote-23528436


DWD in the news 2

http://www.spiegel.de/panorama/gesellschaft/
unwetter-hochwatergate-ard-wehrt-sich-gegen-kachelmann-a-1094937.html

http://www.spiegel.de/panorama/gesellschaft/
unwetter-hochwatergate-ard-wehrt-sich-gegen-kachelmann-a-1094937.html


Financial crisis in the news

http://www.theguardian.com/business/2009/jan/24/nouriel-roubini-credit-crunch

http://www.theguardian.com/business/2009/jan/24/nouriel-roubini-credit-crunch


Media attention often exclusively falls on prediction
performance in the case of extreme events

Bad Data Failed To Predict Nashville Flood NBC, 2011

Weather Service Faulted for Sandy Storm NBC, 2013
Surge Warnings

How Did Economists Get It So Wrong? NY Times, 2009

Nouriel Roubini: The economist who predicted Guardian, 2009
worldwide recession

An exclusive interview with Med Yones - The CEOQ Mag, 2010
expert who predicted the financial crisis

A Seer on Banks Raises a Furor on Bonds NY Times, 2011



Toy example

We compare Alice’s and Bob’s forecasts for Y ∼ N (0, 1),

FAlice = N (0, 1), FBob = N (4, 1)

Based on all 10 000 replicates,

Forecaster CRPS LogS

Alice 0.56 1.42
Bob 3.53 9.36

When the evaluation is restricted to the largest ten observations,

Forecaster R-CRPS R-LogS

Alice 2.70 6.29
Bob 0.46 1.21



Verifying only the extremes erases propriety

Some econometric papers use the restricted logarithmic score

R-LogS≥r (F , y) = −1{y ≥ r} log f (y).

However, if h(x) > f (x) for all x ≥ r ,
then

ER-LogS≥r (H,Y ) < ER-LogS≥r (F ,Y )

independently of the true density. −2 0 2 4
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In fact, if the forecaster’s belief is F , her best prediction under
R-LogS≥r is

f ∗(z) =
1(z ≥ r)f (z)∫∞

r f (x)dx
.



The forecaster’s dilemma

Given any (non-trivial) proper scoring rule S and any non-constant
weight function w , any scoring rule of the form

S∗(F , y) = w(y)S(F , y)

is improper.

Forecaster’s dilemma: Forecast evaluation based on a subset of
extreme observations only corresponds to the use of an improper
scoring rule and is bound to discredit skillful forecasters.
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Proper weighted scoring rules I

Proper weighted scoring rules provide suitable alternatives.

Gneiting and Ranjan (2011) propose the threshold-weighted CRPS

twCRPS(F , y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2w(z) dz

w(z) is a weight function on the real line.

Weighted versions can also be constructed for the logarithmic score
(Diks, Panchenko, and van Dijk, 2011).

Gneiting, T. and Ranjan, R. (2011) Comparing density forecasts using

threshold- and quantile-weighted scoring rules. Journal of Business and

Economic Statistics, 29, 411–422.



Role of the weight function

The weight function w can be tailored to the situation of interest.

For example, if interest focuses on the predictive performance in
the right tail,

windicator(z) = 1{z ≥ r}, or

wGaussian(z) = Φ(z |µr , σ2r )

Choices for the parameters r , µr , σr can be motivated and justified
by applications at hand.



Toy example revisited

Recall Alice’s and Bob’s forecasts for Y ∼ N (0, 1),

FAlice = N (0, 1), FBob = N (4, 1)

based on all 10 000 replicates

Forecaster CRPS LogS

Alice 0.56 1.42
Bob 3.53 9.36

based the largest 10 observations

Forecaster R-CRPS R-LogS

Alice 2.70 6.29
Bob 0.46 1.21

threshold-weighted CRPS, with indicator weight w(z) = 1{z ≥ 2} and

Gaussian weight w(z) = Φ(z |µr = 2, σ = 1)

Forecaster windicator wGaussian

Alice 0.076 0.129
Bob 2.355 2.255



Summary and conclusions

I Forecaster’s dilemma: Verification on extreme events only is
bound to discredit skillful forecasters.

I The only remedy is to consider all available cases when
evaluating predictive performance.

I Proper weighted scoring rules emphasize specific regions of
interest, such as tails, and facilitate interpretation, while
avoiding the forecaster’s dilemma.

I In particular, the weighted versions of the CRPS share (almost
all of) the desirable properties of the unweighted CRPS.

Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F. and Gneiting, T. (2017)
Forecaster’s dilemma: Extreme events and forecast evaluation. Statistical
Science, in press. Preprint available at http://arxiv.org/abs/1512.09244.

Thank you for your attention!

http://arxiv.org/abs/1512.09244

