Forecaster's dilemma: Extreme events and forecast evaluation

Sebastian Lerch

Karlsruhe Institute of Technology Heidelberg Institute for Theoretical Studies

COSMO/CLM/ICON/ART User Seminar 2017 Offenbach, March 7, 2017

joint work with Thordis Thorarinsdottir, Francesco Ravazzolo and Tilmann Gneiting

Heidelberg Institute for Theoretical Studies

Motivation

SPECTATOR

HOME COFFEE HOUSE ELECTION 2015 MAGAZINE COLUMNISTS CULTURE HOUSE PODCAST The Week Features Columnists Books Arts Life Cartoons Classified

Forecast failure: how the Met Office lost touch with reality

Ideology has corrupted a valuable British institution

Rupert Darwall 13 July 2013

118 Comments

http://www.spectator.co.uk/features/8959941/whats-wrong-with-the-met-office/

Outline

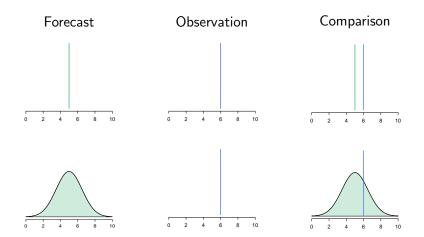
- 1. Probabilistic forecasting and forecast evaluation
- 2. The forecaster's dilemma
- 3. Proper forecast evaluation for extreme events

Probabilistic forecasts

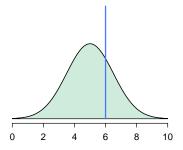
Probabilistic forecasts, i.e., forecasts in the form of probability distributions over future quantities or events,

- provide information about inherent uncertainty
- allow for optimal decision making by obtaining deterministic forecasts as target functionals (mean, quantiles, ...) of the predictive distributions
- have become increasingly popular across disciplines: meteorology, hydrology, seismology, economics, finance, demography, political science, ...

Probabilistic vs. point forecasts



What is a good probabilistic forecast?



The goal of probabilistic forecasting is to maximize the sharpness of the predictive distribution subject to calibration.

Gneiting, T., Balabdaoui, F. and Raftery, A. E. (2007) **Probabilistic forecasts,** calibration and sharpness. *Journal of the Royal Statistical Society Series B*, 69, 243–268.

Evaluation of probabilistic forecasts: Proper scoring rules

A proper scoring rule is any function

S(F, y)

such that

$$\mathbb{E}_{Y\sim G}S(G,Y) \leq \mathbb{E}_{Y\sim G}S(F,Y)$$

for all $F, G \in \mathcal{F}$.

We consider scores to be negatively oriented penalties that forecasters aim to minimize.

Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction, and estimation. *Journal of the American Statistical Association*, 102, 359–378.

Examples

Popular examples of proper scoring rules include

► the logarithmic score

$$LogS(F, y) = -log(f(y)),$$

where f is the density of F,

the continuous ranked probability score

$$CRPS(F, y) = \int_{-\infty}^{\infty} (F(z) - \mathbb{1}\{y \le z\})^2 dz,$$

where the probabilistic forecast F is represented as a CDF.

Outline

- 1. Probabilistic forecasting and forecast evaluation
- 2. The forecaster's dilemma
- 3. Proper forecast evaluation for extreme events

DWD in the news 1

ก็อี่ในนี้ วินิมิน่าปีการต่อน Home Köln region freizeit 1. FC Köln sport ratgeber karneval anzeigen e-paper

Kölner Stadt-Anzeiger | Panorama | Kritik an DWD: Wetterdienst verteidigt Warnungen nach abgesagten Rosenmontagszügen

Kritik an DWD Wetterdienst verteidigt Warnungen nach abgesagten Rosenmontagszügen

http://www.ksta.de/panorama/wetterdienst-verteidigt-warnungen-sote-23528436

DWD in the news 2

SPIEGEL ONLINE DER SPIEGEL SPIEGEL TV

ARD wehrt sich gegen Kachelmann-Kritik

Tief "Elvira" hat mehrere Orte in Süddeutschland verwüstet. Jetzt streiten sich ARD und Meteorologe Jörg Kachelmann, ob man vor dem Unwetter deutlicher hätte warnen müssen.

Montag, 30.05.2016 18:38 Uhr

Drucken Nutzungsrechte Feedback Kommentieren

http://www.spiegel.de/panorama/gesellschaft/ unwetter-hochwatergate-ard-wehrt-sich-gegen-kachelmann-a-1094937.html

Financial crisis in the news

He told us so

They called him Dr Doom. He was the economist who three years ago predicted in detail a collapse of the housing market and worldwide recession - and was roundly ridiculed for it. Emma Brockes asks Nouriel Roubini what he foresees now

http://www.theguardian.com/business/2009/jan/24/nouriel-roubini-credit-crunch

Media attention often exclusively falls on prediction performance in the case of extreme events

Bad Data Failed To Predict Nashville Flood	NBC, 2011
Weather Service Faulted for Sandy Storm Surge Warnings	NBC, 2013
How Did Economists Get It So Wrong?	NY Times, 2009
Nouriel Roubini: The economist who predicted worldwide recession	Guardian, 2009
An exclusive interview with Med Yones - The expert who predicted the financial crisis	CEOQ Mag, 2010
A Seer on Banks Raises a Furor on Bonds	NY Times, 2011

Toy example

We compare Alice's and Bob's forecasts for $Y \sim \mathcal{N}(0, 1)$,

$$F_{\text{Alice}} = \mathcal{N}(0, 1), \qquad F_{\text{Bob}} = \mathcal{N}(4, 1)$$

Based on all 10 000 replicates,

Forecaster	CRPS	LogS
Alice	0.56	1.42
Bob	3.53	9.36

When the evaluation is restricted to the largest ten observations,

Forecaster	R-CRPS	R-LogS
Alice	2.70	6.29
Bob	0.46	1.21

Verifying only the extremes erases propriety

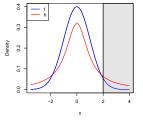
Some econometric papers use the restricted logarithmic score

$$\mathsf{R}\text{-}\mathsf{LogS}_{\geq r}(F, y) = -\mathbb{1}\{y \geq r\} \log f(y).$$

However, if h(x) > f(x) for all $x \ge r$, then

$$\mathbb{E} \operatorname{\mathsf{R-LogS}}_{\geq r}(H, Y) < \mathbb{E} \operatorname{\mathsf{R-LogS}}_{\geq r}(F, Y)$$

independently of the true density.



In fact, if the forecaster's belief is F, her best prediction under $\text{R-LogS}_{\geq r}$ is

$$f^*(z) = \frac{\mathbb{1}(z \ge r)f(z)}{\int_r^\infty f(x)dx}.$$

The forecaster's dilemma

Given any (non-trivial) proper scoring rule S and any non-constant weight function w, any scoring rule of the form

$$S^*(F,y) = w(y)S(F,y)$$

is improper.

Forecaster's dilemma: Forecast evaluation based on a subset of extreme observations only corresponds to the use of an improper scoring rule and is bound to discredit skillful forecasters.

Outline

- 1. Probabilistic forecasting and forecast evaluation
- 2. The forecaster's dilemma
- 3. Proper forecast evaluation for extreme events

Proper weighted scoring rules I

Proper weighted scoring rules provide suitable alternatives.

Gneiting and Ranjan (2011) propose the threshold-weighted CRPS

$$\mathsf{twCRPS}(F, y) = \int_{-\infty}^{\infty} (F(z) - \mathbb{1}\{y \le z\})^2 w(z) \, \mathrm{d}z$$

w(z) is a weight function on the real line.

Weighted versions can also be constructed for the logarithmic score (Diks, Panchenko, and van Dijk, 2011).

Gneiting, T. and Ranjan, R. (2011) **Comparing density forecasts using threshold- and quantile-weighted scoring rules**. *Journal of Business and Economic Statistics*, 29, 411–422.

The weight function w can be tailored to the situation of interest.

For example, if interest focuses on the predictive performance in the right tail,

$$w_{ ext{indicator}}(z) = \mathbbm{1}\{z \geq r\}, ext{or}$$

 $w_{ ext{Gaussian}}(z) = \Phi(z|\mu_r, \sigma_r^2)$

Choices for the parameters r, μ_r, σ_r can be motivated and justified by applications at hand.

Toy example revisited

Recall Alice's and Bob's forecasts for $Y \sim \mathcal{N}(0, 1)$,

$$F_{Alice} = \mathcal{N}(0, 1), \qquad F_{Bob} = \mathcal{N}(4, 1)$$

ForecasterCRPSLogSForecasterR-CRPSR-LAlice0.561.42Alice2.706			
Alice 0.56 1.42 Alice 2.70 6	Forecaster CRPS LogS	LogS Forecaster R-C	RPS R-LogS
			0.25

threshold-weighted CRPS, with indicator weight $w(z) = \mathbb{1}\{z \ge 2\}$ and Gaussian weight $w(z) = \Phi(z|\mu_r = 2, \sigma = 1)$

Forecaster	Windicator	WGaussian
Alice	0.076	0.129
Bob	2.355	2.255

Summary and conclusions

- Forecaster's dilemma: Verification on extreme events only is bound to discredit skillful forecasters.
- The only remedy is to consider all available cases when evaluating predictive performance.
- Proper weighted scoring rules emphasize specific regions of interest, such as tails, and facilitate interpretation, while avoiding the forecaster's dilemma.
- In particular, the weighted versions of the CRPS share (almost all of) the desirable properties of the unweighted CRPS.

Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F. and Gneiting, T. (2017) Forecaster's dilemma: Extreme events and forecast evaluation. *Statistical Science, in press.* Preprint available at http://arxiv.org/abs/1512.09244.

Thank you for your attention!