

Monte-Carlo Spectral Integration in COSMO Radiation Scheme

Harel Muskatel (IMS), Bodo Ritter (DWD) ICCARUS Seminar, DWD Offenbach, February 26, 2018

Outline

- General description of radiative transfer calculation methods
- COSMO radiation scheme RG92
- What is Monte-Carlo Spectral Integration?
- The COSMO-MCSI setup
- Run time and errors comparisons
- Model performance verifications against observational data
- Conclusions

Testing & Tuning of Revised Cloud Radiation Coupling - T²(RC)²

Revised Cloud/aerosols **R**adiation Coupling

Testing & Tuning

Earth's Energy Budget

Chandrasekhar's General Radiative **Transfer Equation (RTE)**

$$\mu \frac{dI_{\nu}(\tau_{\nu,\mu},\phi)}{d\tau_{\nu}} = I_{\nu}(\tau_{\nu,\mu},\phi) - \varpi_{\nu}(\tau_{\nu}) \frac{j_{\nu}^{sca}(\tau_{\nu,\mu},\phi)}{\sigma_{sca}(\nu)} - (1 - \varpi_{\nu}(\tau_{\nu})) \frac{j_{\nu}^{thermal\ emi}(\tau_{\nu})}{\sigma_{abs}(\nu)}$$

- I_{ν} radiance
- τ_{ν} extinction optical thickness (abs. + sca.) here treated as vertical coordinate
- μ cos(Solar zenith angle)
- ϕ azimuth angle
- $\overline{\omega}_{v}$ single scattering albedo, ($\overline{\omega}_{v}$ =0 "pure abs", $\overline{\omega}_{v}$ =1 "pure sca"))

$$\varpi_{\nu} = \frac{n_{sca}\sigma_{sca}}{n_{sca}\sigma_{sca} + n_{abs}\sigma_{abs}}$$

 $j_{\nu}^{sca/em.}$ $\sigma_{sca/abs}(\nu)$ - scattering/absorption cross section

$$(\tau_{\nu,\mu},\phi)$$
- sca./emission ability

$$\mu \frac{dI_{\nu}(\tau_{\nu,\mu},\phi)}{d\tau_{\nu}} = I_{\nu}(\tau_{\nu,\mu},\phi) - \varpi_{\nu}(\tau_{\nu}) \oint_{4\pi} d\Omega' \frac{1}{4\pi} P_{\nu}(\mu',\phi',\mu,\phi) I_{\nu}(\tau_{\nu,\mu},\phi) - (1 - \varpi_{\nu}(\tau_{\nu})) B_{\nu}(T(\tau_{\nu}))$$

 $P_{\nu}(\mu',\phi',\mu,\phi)$ - scattering phase function (probability that ray from μ',ϕ' will scatter to μ,ϕ)

5 $B_{\nu}(T(\tau_{\nu})$ - Planck's Function

Assumptions we make for simplicity

- Plane parallel atmosphere
- Local thermal equilibrium (LTE) only thermal emissions considered
- Two-stream approximation (1D problem) ↓ ↑
 ➢ Isotropic scattering for half sphere (many scatterings)
 ➢ Rayleigh/Henyey-Greenstein phase functions

$$P_{Ray}(\theta) = \frac{3}{4}(1 + \cos^{2}\theta) \qquad g = \frac{1}{2} \int_{-1}^{1} P(\cos\theta) \cos\theta d\cos\theta$$

$$P_{HG}(\theta) = \frac{1 - g^{2}}{(1 + g^{2} - 2g\cos\theta)^{3/2}} \bigvee_{180^{\circ}} \frac{1 - g}{(1 + g)^{2}} \qquad g = \begin{cases} 1 & forward \\ 0 \\ -1 & backwards \end{cases}$$

And that's not all...

The RTE needs to be computed for each (x, y, z, v) and separately for each of the gases, aerosols, hydrometeors

The k-distribution Method

- For gases $(H_2O, CO_2, O_3...)$ the absorption is rapidly changing as a function wavelength. Line by line (LBL) methods are too expensive for NWP
- In the k-distribution method gases absorption spectra for each band is transformed from wavelength to cumulative probability space

FIG. 1. Absorption coefficient k in (cm atm)⁻¹ as a function of (a) wavenumber and (b) cumulative probability for the O₃ 9.6-μm band for a pressure of 25 mb and a temperature of 220 K.

Fu & Liou 1992

Exponential Sum Fitting Technique - ESFT

• One simple application of KDM is calculating the transmission function for a wide spectral interval and to fit it to series of exponentials as function of path length *u* :

$$T_{\overline{\lambda}}(u) \approx \frac{1}{\Delta \lambda} \int_{\Delta \lambda} e^{-k_{\lambda} u} d\lambda \approx \int_{0}^{1} e^{-k(g)u} dg \approx \sum_{g} w_{g} e^{-k_{g} u}, \quad \sum_{g} w_{g} = 1$$

• The total flux is a some of pseudo-monochromatic fluxes for all three gasses, in all spectral intervals *b* and for all *g*-points

$$F(x, y, z, t) \approx \sum_{b} w_{b} \sum_{g_{b,1}} \sum_{g_{b,2}} \sum_{g_{b,3}} w_{g,b,1} w_{g,b,2} w_{g,b,3} F(\delta_{0} + \delta_{g,b,1} + \delta_{g,b,2} + \delta_{g,b,3})$$

 δ_0 - optical thickness of gray constituents only (clouds, aerosols)

• But still - computationally very expensive!

Fast ESFT - FESFT

- First guess would be neglecting overlapping absorption bands of different gases in other words considering only the dominant gas in each band – causes systematic errors we cannot afford
- FESFT Calculate each gas + gray constituents separately and then combine:

$$\overline{T}_{1,\lambda} = \frac{F^1}{F^0} = \frac{\sum_g w_g F(\delta_0 + \delta_{1)}}{F^0}$$

$$F \approx \prod_{i=1}^{N_{gas}} \overline{T}_{i,\lambda} F^0$$

- CPU run time gain is factor of ~3
- Reasonable accuracy
- COSMO's default scheme

Still not fast enough \rightarrow compromise on spatial/temporal resolution

FIG. 1. Comparison of solar heating rates in a midlatitude summer atmosphere using the exponential sum-fitting technique in its original (ESFT) and its approximate fast (FESFT) version. A cloud with 10 g m⁻² liquid water content is located between the 1000- and 2000-m heights. Solar zenith angle is 30° and a surface albedo of 0.20 is assumed.

Radiation Temporal Resolution

Radiation Temporal Resolution

Radiation Spatial Resolution

Monte-Carlo Method

Manhattan Project

Stanislaw Ulam

John von Neumann

ENIAC

Charney, J. G.; Fjörtoft, R.; Neumann, J. (1950). "Numerical Integration of the Barotropic Vorticity Equation". Tellus. **2** (4): 237–254. <u>doi:10.1111/j.2153-</u> <u>3490.1950.tb00336.x</u>.

Monte-Carlo Spectral Integration - MCSI

J. Adv. Model. Earth Syst., Vol. 1, Art. #1, 9 pp.

Monte Carlo Spectral Integration: a Consistent Approximation for Radiative Transfer in Large Eddy Simulations

Robert Pincus¹ and Bjorn Stevens²

Back to ESFT but instead of doing this every 15 min (45 time steps):

$$F(x, y, z, t) \approx \sum_{b} w_{b} \sum_{g_{b,1}} \sum_{g_{b,2}} \sum_{g_{b,3}} w_{g,b,1} w_{g,b,2} w_{g,b,3} F(\delta_{0} + \delta_{g,b,1} + \delta_{g,b,2} + \delta_{g,b,3})$$

Pick only one *g* point according to its probability weight for each gas & band more frequently (i.e. every time step):

$$F(x, y, z, t) \approx \sum_{b} w_{b} F(\delta_{0} + \delta_{g', b, 1} + \delta_{g', b, 2} + \delta_{g', b, 3})$$

Locally temporal big errors that averages fast to an accurate solution!

COSMO ESFT Diagram

Example: for spectral interval b=7 we have 3x3x7 = 63 calls inv_th/inv_so subrutines which calculate the fluxes → Total of 301 calls to inv_th/inv_so subrutines

COSMO FESFT Diagram

→ Here we calculate each b, g only once (all small boxes) total of 87 calls to inv_th/inv_so subrutines CPU gain $\approx \frac{calls \ decreas}{frequency \ increase} = \frac{301/87}{1} = 3.46$

COSMO MCSI Diagram – Classic Version

→ Only 1 call to inv_th/inv_so subrutines instead of 301 calls in ESFT CPU gain $\approx \frac{calls \ decreas}{frequency \ increase} = \frac{301/1}{45} = 6.7$

COSOMO MCSI Diagram – Soft Version

→ Only 8 calls to inv_th/inv_so subrutines instead of 301 calls in ESFT!

CPU gain
$$\approx \frac{calls \ decreas}{frequency \ increase} = \frac{301/8}{45} = 0.83$$

COSMO Radiation Module

```
MODULE src_radiation
SUBROUTINE organize_radiation
SUBROUTINE fesft
                        ! ESFT & FESFT
...
    DO jspec= 1, nspec ! Spectral loop
      DO jh2o = 1, ih2o ! Loop over H_2O coefficients
        DO jco2 = 1, ico2 ! Loop over CO_2 coefficients
         DO jo3 = 1, io3 ! Loop over O_3 coefficients
            ...
                    inv_th/so
            CALL
            • • •
...
...
```

- COSMO-2.8km
- Test case: 23-25/04/2015 Turkey
- Partial cloudiness + High wind speeds
- Stand alone computer 1-node 4 CPUs

1 st day	ESFT		FESFT				MCSI			
Temporal Resolution	20s	15min	20s	15min (default)	15min coarse	1hr	20s	100s	5min	15min
Radiation cost [%]	730	28.93	156.69	4.09	1.00	1.15	38.02	8.20	3.14	1.34
Radiation cost compared to default	178	7.07	38.30	1	0.25	0.28	9.29	2.00	0.77	0.33
Total model runtime compared to default	7.97	1.24	2.47	1	0.97	0.97	1.33	1.04	0.99	0.97
T _{2m} RMSE [K]	0	0.134	0.067	0.133	0.151	0.213	0.106	0.136	0.170	0.218
T _{2m} Bias [K]	0	-0.005	0.001	-0.004	-0.010	-0.024	0.002	0.002	0.004	0.005
GR RMSE [W/m ²]	0	43.3	14.8	43.5	44.0	66.2	104.9	108.2	111.5	116.6
GR Bias [W/m ²]	0	-0.02	0.10	-0.14	-2.48	-3.71	0.11	0.05	0.39	0.89

* Averaged over 116,053 grid points and over 24h

Testing MCSI Scheme vs. Ground Based Measurements

- **29 test cases** in different weather situations, lead time of 30h/42h
- 10 measurement stations T2m validation
- Compare 3 models:
 - FESFT 15 min / 45 steps
 - MCSI 20 s / 1 step
 - MCSI 100 s / 5 step
 - MCSI 15 min / 45 steps

Testing vs. Ground Based Measurements Clear skies

Testing vs. Ground Based Measurements Cloudy skies

Summary

- "Full" radiation scheme calculations is impractical in NWP applications
- We can compromise on the : spatial, temporal or spectral resolutions
- Each has it own advantages and disadvantages. The MCSI greatest strength is that the "dilution" of computations is wise and based on statistical reasoning
- The MCSI is now implemented in COSMO (itype_mcsi = 1) gives a reasonable and comparable results in both CPU and performance to the default FESFT scheme
- MCSI did not show a significant advantage to the FESFT which deserves a change in the default scheme choice
- Nevertheless, the tests shown here were done on 2.8 km / 20 seconds model resolution. It is possible that MCSI can be preferable when using different model uses (climate, LES) and model resolutions.