Modeling the Spatial and Temporal Variability of Fog in the Namib Desert with COSMO

Maike Hacker, Andreas Bott

ICCARUS DWD, Offenbach, 26th February 2018

Outline

NaFoLiCA-M

2

Relevance

Fog precipitation (mm). 7/14 - 6/16. R. Vogt

- Namib is one of the driest deserts on earth
- only a few millimeters precipitation per year
- up to 200 days with fog
- fog water deposition is important water source

NaFoLiCA – Namib Fog Life Cycle Analysis

Model Setup

Model Setup

Namelist Parameter	COSMO-DE Setup	Tropical Setup (2.8 km)
domain height	22 000	30 000
number of vertical layers (ke)	50	57
reference temperature on sea level (t0sl)	288.15	300
temperature difference sea level ↔ stratosphere (delta_t)	75	90
scale height (h_scal)	10 000	12 000
coordinate value to change to z-system (vcflat)	11 357	15 000
bottom height of Rayleigh sponge layer (rdheight)	15 000	18 000

Model Setup

- COSMO-Version 5.01
- initialization at 12 UTC
- forecast time 30 hours
- twofold nesting
 - COSMO 7 km driven by ICON
 - COSMO 2.8 km driven by COSMO 7 km
- three different vertical grids, Δz_{min} =20m
- 1D TKE-based closure on level 2.5 (Mellor and Yamada, 1982)
- one-moment bulk scheme (Reinhardt and Seifert, 2006)

NaFoLiCA-M

NAFOLICA

NaFoLiCA-M

NaFoLiCA-M

NaFoLiCA-M

Preliminary Results

Case Study 18./19. September 2017

Fog and Stratus Defined by Liquid Water Path

12 UTC

Ke = 57

Ke = 92

Ke = 75

Ke = 75, tkvmin = 0.05

NaFoLiCA-M

13

Fog and Stratus Defined by Liquid Water Path

NaFoLiCA-M

Fog and Stratus Defined by Liquid Water Path

06 UTC + 1d

Ke = 57

Ke = 92

Ke = 75

Ke = 75, tkvmin = 0.05

NaFoLiCA-M

Fog and Stratus Defined by Liquid Water Path

NAFOLICA

NaFoLiCA-M

Comparison of Model Configurations

- well-mixed layer of 300 to 500 m thickness
- fog layer beneath the inversion
- slight improvement by increased number of vertical layers
- tuning of turbulence scheme is more effective than change of vertical layers

NaFoLiCA-M

17

- unphysical behavior of temperature profiles for decreased minimal turbulent exchange coefficients
- oscillations of turbulent exchange coefficients
 - → numerical instabilities

- filtering based on Buzzi et al. (2011): $K_{k}^{new} = 0.5K_{k} + 0.2 [K_{k+1} + K_{k-1}] + 0.05 [K_{k+2} + K_{k-2}]$
- oscillations of turbulent exchange coefficients are eliminated

Changes in Boundary Layer Dynamics due to Filtering

NaFoLiCA-M

Changes in Boundary Layer Dynamics due to Filtering

NAFOLICA

NaFoLiCA-M

Conclusion

Setup of COSMO Simulations

- ✓ tropical setup
- ✓ increase of vertical resolution in the planetary boundary layer

Comparison of Model Configurations

- ✓ initialization from ICON reproduces spatial distribution of stratus and fog
- COSMO strongly underestimates fog and stratus
- × decrease of model layer thickness has no significant influence on results
- ✓ reduction of TKVH_{min} and TKVM_{min} is very effective
- numerical instabilities occur for configurations with decreased mixing and increased number of vertical layers
- x filtering of exchange coefficients changes boundary layer dynamics

Outlook

Treatment of Numerical Instabilities

- objective detection of numerical instabilities
- investigate behavior of dimensionless gradients and stability functions
- improve filtering
- other solutions to instability problem?

Tuning of Model Parameters

- further decrease minimal exchange coefficients
- ..

Dissolution of Fog and Stratus

• sensitivity to initial time

Simulations with COSMO-PAFOG

Modeling the Spatial and Temporal Variability of Fog in the Namib Desert with COSMO

Maike Hacker, Andreas Bott

ICCARUS DWD, Offenbach, 26th February 2018

Fog and Stratus Defined by Vertically Integrated Liquid Water Content

NaFoLiCA-M

Fog and Stratus Defined by Vertically Integrated Liquid Water Content

06 UTC

NaFoLiCA-M

26

Fog and Stratus Defined by Vertically Integrated Liquid Water Content

17 UTC

NaFoLiCA-M

27

Fog and Stratus Defined by Vertically Integrated Liquid Water Content

02 UTC + 1d

NaFoLiCA-M

Dissolution of the Stratus Over the Atlantic

- temperature inversion between 300 and 500 m
- saturated layer beneath the inversion
- slight improvement by increased number of vertical layers, but inversion still too weak

Dissolution of the Stratus Over the Atlantic

- moist layer close to inversion layer is still present, but not saturated
- dissolution of the stratus

- unphysical behavior of temperature profiles for changed vertical coordinates
- unexpected oscillations of turbulent exchange coefficients
 - → numerical instabilities

