

Interactions between soil moisture anomalies on different scales and the dynamics of the lower atmosphere

Florian Baur, Christian Keil, George C. Craig

Meteorologisches Institut, Ludwig-Maximilians-Universität München, Germany

Spatial and temporal soil moisture effects in satellite data

- 10 year data set of global satellite precipitation measurements
 - Spatial Resolution: 0.25°
 - Temporal Resolution: 3 h
- Comparison of temporal and spatial structures in soil conditions prior to afternoon precipitation

Spatial and temporal soil moisture effects in COSMO?

Spatial and temporal soil moisture effects in COSMO?

Research Questions:

- 1) What is the influence of soil moisture bias and heterogeneity on convective precipitation?
 - 2) Is the impact of soil moisture heterogeneity scale dependent?

- What are dominant processes?
- Are our findings dependent on the synoptic regime?

COSMO - Experimental Setup

Model:

- Deterministic COSMO-DE
- 2.8 km resolution
- 1 hourly COSMO-EU analysis data
- Initial time 0 UTC + 24 h forecast lead time
- 2 Moment microphysics scheme

Type of heterogeneity: Idealized perturbations of initial soil moisture conditions

8	Case	Studies
---	------	---------

30 June 2009	01 July 2009		
20 May 2011	23 July 2013		
29 May 2016	04 June 2016		
05 June 2016	06 June 2016		

Sets of experiments

set of experiments	bias (B)	patch sizes	w _{so} dry patch	w _{so} moist patch
UNI	-	uniform	$w_{so} =$	$=\overline{W_{SO}}$
CDB	0.75	28 km, 42 km,		
CNB	1.00	56 km, 84 km,	$(B \ \overline{w_{so}}) \ 0.75$	$(B \overline{w_{so}}) 1.25$
CMB	1.25	112 km		
		1.0	1.0	

ICCARUS 2018 - 26. February 2018 - Florian.Baur@Imu.de

1. Mean impact of soil moisture bias $\pm 25\,\%$

- Before 15 UTC: Differences less than 5 %
- · After 24 h: stratified according to bias
 - CMB $\rightarrow \approx 10\%$ more precipitation
 - * CDB $\rightarrow \approx 15\,\%$ less precipitation
 - CNB $\rightarrow \approx$ similar precipitation

1. Mean impact averaged over dry and moist tiles

- Earlier increase of afternoon convective precipitation over dry patches
- · Increased precipitation over dry patches
- Influence of soil moisture bias still prevalent

1. Mean impact averaged over dry and moist tiles

- Earlier increase of afternoon convective precipitation over dry patches
- · Increased precipitation over dry patches
- Influence of soil moisture bias still prevalent

 \rightarrow Confirmation of observational results

Is the influence of soil moisture heterogeneity negligible after averaging over a large domain and several weakly forced case studies?

2. Scale dependence of soil moisture heterogeneity

dependent on patch size

- Domain averaged precipitation shows no scale dependence
- · But: dependence on bias clearly visible
- · Envelope shows scale dependent variability
- Standard deviation of CNB shows minimum in variability in scale range 50 80 km

2. Scale dependence of soil moisture heterogeneity

- Domain averaged precipitation shows no scale dependence
- · But: dependence on bias clearly visible
- · Envelope shows scale dependent variability
- Standard deviation of CNB shows minimum in variability in scale range 50 – 80 km

Is the minimum in variability linked to a physical mechanism?

3. Mechanisms: Mean vertical cross-section

6 June 12UTC: CNB_084k - UNI

- Moist Static Energy (*MSE*, shaded)
- u- & w-wind (arrows)
- Moisture Flux Convergence (MFC) vertically averaged over lowest 1000 m

Averaging pattern shifted zonally through the domain and averaged meridionally

3. Mechanisms: Scale dependence

- Divergence over moist patch; Convergence over dry patch
- Highest MSE in moist Boundary Layer over moist patch
- Downwind flank of dry patch shows increased convergence \rightarrow export of MSE

3. Mechanisms: Scale dependence of hourly precipitation

- Updraft region on downwind flank of dry patch more prominent for 84 km scale
- · Strongest precipitation locked at this updraft region
- Weaker signature of patch size at 112 km scale

4. Regime dependence

29 May 12UTC: CNB_112k - UNI

- Weaker dipole in MSE
- · Circulation cells shallower
- · No distinct updraft region to lock convection

Summary

- COSMO experiments confirm satellite observations
- Soil moisture bias influences domain averaged precipitation
- · Soil moisture heterogeneity influences local precipitation

Summary

2

- COSMO experiments confirm satellite observations
- Soil moisture bias influences domain averaged precipitation
- Soil moisture heterogeneity influences local precipitation
- Daily precipitation independent of heterogeneity length scale
- Smallest day-to-day variability of daily precipitation at scales of 50 – 80 km

Summary

(2)

3

- · COSMO experiments confirm satellite observations
- Soil moisture bias influences domain averaged precipitation
- · Soil moisture heterogeneity influences local precipitation
- Daily precipitation independent of heterogeneity length scale
- Smallest day-to-day variability of daily precipitation at scales of 50 – 80 km
- Locking of maximal precipitation at upwind flank of moist anomaly with 50 – 80 km patch size
- Less constraint of precipitation on soil moisture anomalies at larger sizes
- · Clearer signature of soil moisture anomalies during weak forcing

