

The role of soil moisture-atmosphere interactions on the representation of Mediterranean weather extremes

Sebastian Helgert and Samiro Khodayar Extreme Weather in a Changing Climate

Institute of Meteorology and Climate Research – Tropospheric Research (IMK-TRO)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

sebastian.helgert@kit.edu

- 1. Impact of extreme initial soil moisture (SM) on the representation of wet extremes
 - How relevant are SM-atmosphere interactions in the Mediterranean region?
- 2. Realistic initialization with high-resolution satellite

derived soil moisture data

What effect does realistic soil moisture initialization have on the prediction of wet extremes?

Methodology: Data sources

Multiscale simulations with COSMO

- COSMO 5.01
- Horizontal resolution: 7km to 2.8km
- **Temporal resolution**: 2-3 days to years
- SVAT: TERRA-ML model
- SMOSL4: High resolution downscaled SMOS soil moisture (SM) product
 - 1km resolution ("all weather" version)
- Observational data
 - CMORPH (CPC MORPHing technique) precipitation data (~8km,1/2h)
 - SM in situ networks

Description of SM sensitivity experiments

- **Extreme dry scenario (DRY)** initial SM **>** wilting point
- **Extreme wet scenario (WET)** initial SM **>** field capacity
- Seasonal simulation (SON2012)
- Initialization at 08.08.2012 00UTC (~1/2 month spin up)

Impact on atmospheric conditions

Relative change (WET scenario) to mean value of SON 2012 (CLM2.8km)

Changes in mean precipitation (SON 2012)

Convection-parameterized vs convection-permitting simulations

Validation by SM in situ networks

improved and the accuracy of the original SMOS product is maintained

Convective precipitation event

Example for simulation with SMOS SM initialization (09.09.2012)

Verification of precipitation forecast SAL Sep5-CTRL **Pyrenees** Sep5-SMOS **0.8** Sep6-CTRL -Area 0.5 Sep6-SMOS A-component (09.09)Sep8-CTRL 0.6 Sep8-SMOS uo 0.4 -0.5 0.2 CTRL 0 0.5 -1.5 -0.5 0 1 1.5 S-component

Atmospheric vertical profile (9.Sep)

Cross section along the latitude 42°- 43°

Atmospheric vertical profile (9.Sep)

Cross section along the latitude 42°- 43°

Conclusions

- Soil moisture-atmosphere interactions play an important role on the representation of wet extremes in the WMed autumn season
- SM-precipitation feedback is positive in convectionparameterized simulations as well as in convection-permitting simulations
- The 7km-simulations show a stronger feedback with up to 20% more precipitation in semi-arid regions
- Our bias-corrected SMOS-SM profile product for COSMO initialization shows a good agreement with SM in situ measurements
- The application of this realistic SMOS initialization revealed an improvement of the prediction of convective precipitation