Towards a more sophisticated and implicit formulation of surface layer processes for COSMO and ICON

Numerical and conceptual effects of a reformulated SAT

- ✓ Analysis of the current <u>simplified, explicit and sequential</u> chain of surface-processes in TERRA
- ✓ <u>Implicit treatment of surface-temperature</u> including
 - treatment of the <u>snow-temperature (implicitly coupled with soil and its surface)</u>
 - o <u>additional feedback of surface temperature</u> via
 - thermal stability-effect of <u>atmospheric transfer-velocity</u>
 - <u>freezing and melting of interception-water and falling precipitation</u>
 - o potential of treating roughness-layer effects (surface-temperature decoupled from compact soil)

<u>Illustration of a realistic surface concept:</u>

Critical properties of the real surface:

- inter-surface exchange of sensible-heat and (mainly long-wave) radiation
- A : indicator of the lowermost full atm. level
- S := B + C : area and indicator of <u>total surface</u>
- C : area and indicator of the <u>cover-surface</u> (surface of all <u>R-elements</u>)
- Sn : indicator of the snow-cover surface
- B : area and indicator of the bare-soil surface
- B₁ : indicator of the <u>uppermost full soil level</u>
- Sf : indicator of <u>all snow-free surfaces</u>
- R-elements are substantial, semi-transparent and thermally loosely coupled to B.
 - > Their temperature T_c may be different from T_B , which is distinctive from T_{B1} .
 - > They can shade B and Sn from radiation.
 - > They exchange sensible-heat and (long-wave) radiation with B.
 - > They may carry liquid <u>and</u> frozen interception water w_{sf} dependent on T_c .
- In case of a present snow-cover, snow-free parts of S are mainly parts of C.
 - > R-elements vanish within a deep snow-cover.
 - > Distribution of snow cover alters aerodynamic R-length (z_0) and short-wave albedo.
 - > Snow/rime and black-ice have different short-wave albedo
- Coexistence of liquid and frozen interception-water is possible.
 - Smooth transition due to variance of T_{Sf}.

Idealized and incomplete surface concept of the current implementation:

Current implementation:

- A : indicator of the lowermost full atm. level
- S := B + C : area and indicator of <u>total surface</u>
- C : area and indicator of the <u>cover-surface</u> (surface of all <u>R-elements</u>)
- Sn : indicator of the snow-cover surface
 - B : area and indicator of the bare-soil surface
 - B₁ : indicator of the <u>uppermost full soil level</u>
 - Sf : indicator of all snow-free surfaces
- Total land-use surface is a topographic enlargement of the horiz. ground by the factor SAI.
 - thermally coupled with the soil like the bare-soil surface
 - > with fractions of **distinctive Sf-evaporation**: bare-soil, vegetated, wetted, or sealed)
 - snow-cover always thermally coupled with soil like an additional soil layer
- R-elements do not cover (shade) the bare-soil surface B, as they are rather a part of it!
 - > only one Sf surface-temperature $T_{Sf} = T_C = T_B = T_{B1}!!$
- R-elements carry only liquid interception water.
 - > <u>oper. COSMO</u>: **rime** is treated as **part of the snow-cover**
- Mass (heat-capacity) of R-elements (including w_{sf}) is neglected.
 - > they are treated like a pure **additional transport-resistance** for sensible and latent heat.
- Snow-cover follows surface-structure (some snow-effect on z₀ only in ICON).

Some consequences of the incomplete surface-concept:

- Too strong thermal coupling between surface and compact soil:
 - Overestimated heat-flux into or from the ground:
 - Artificially reduced diurnal cycle of mean surface temperature T_s!
- Snow-covered B below snow-free C can't be represented:
 - No heating of R-layer air above a shaded snow-cover possible:
 - ↔ Snow is artificially "pushed together" to obtain Sf surfaces with T_{Sf} >Tmelt.
 - Always a Sf part of B present, which may
 - perform overestimated bare-soil evaporation at T_{sf}>Tmelt
 - that is artificially reduced.
 - > push some heating dedicated for the <u>surrounding air</u> into the <u>soil</u>.
 - \blacktriangleright raise T_{B1}, leading to **overestimated snow-melting from below**:
 - Introduction of <u>dynamic sub-tiles</u> for Sn and Sf with individual T_{B1,...}
 - Large spreading of rime | fresh-snow can't be captured
 - > Sn (showing potential evaporation) is too small | individual snow-depth is too large
 - Introduction of <u>rime as part of w_{Sf}</u> | Snow-depth calculated by a special fresh-snow fraction

but: albedo-effect, and heat release for dew<->rime transition is not yet described!

- \circ $\,$ No simulation of snow-albedo reduction by snow-free C above a snow-cover:
 - Treatment of "dirty" snow ("polluted" by R-Elements) with reduced albedo, which
 - > pushes some heating dedicated for the <u>surrounding air</u> into the <u>snow-pack</u>
 - \succ raises T_{Sn}, leading to **overestimated snow-evaporation**

that is artificially reduced.

substantial, semi-transparent cover-layer (canopy), being thermally loosely coupled to the compact soil!

✤ : indicator for "dirty" fixes in

current ICON-version

Current explicit and sequential treatment of precipitation and interception water:

- **RWF**_{sn} is offered for **infiltration**.

- RWF : <u>rain-water flux</u>-density
- SWF : <u>snow-water flux</u>-density (including grauple)
- PWF := RWF + SWF : precipitation-water flux-density
- PHF : latent-heat flux-density (from PWF phase-transit.)
- χ° : <u>any variable</u> valid for the **previous time level**
 - Rime-fall onto Sn is a part of SWF_{Sn} .
 - Rime-fall onto Sf either contributes
 - \circ to \mathbf{w}_{sn} as well (COSMO) or
 - $\circ~$ to $\boldsymbol{w_{Sf}}$ as part of a frozen fraction (ICON)
- **Explicit evaporation**: applied to W_{Sf}^{0} ; artificially restricted to avoid negative water levels.
- Thereafter, remaining PWF_{sf} charges w_{sf} , and a drip-water rate DWF_{sf} reduces it.
- w_{sf} is afterwards limited to remain positive-definite and below a maximal capacity
- **Exceeding water** spills and is offered for **infiltration**.
- Freezing RWF_{sf} provides a positive contribution to PHF_{sf} (flux-density of latent freezing heat).
- Melting SWF_{sf} provides a negative contribution to PHF_{sf} (flux-density of latent melting heat).
- > Explicit treatment of w_{sf} with consecutive processes splitting in an arbitrary order:
 - Evaporation may be restricted, although it is raining!
 - **PWF-conversions** may be **too excessive**, since their **implicit effect on T_{sf} is not considered**!
- Even if rime is considered as part of w_{sf}, freezing or melting of w_{sf} has no caloric effect so far!

Current explicit treatment of surface-heat flux-densities:

previous explicit infiltration with an (incomplete) implicit extension singularity for vanishing snow-depth!

- Melting of snow and freezing | melting of soil-water executed explicitly afterwards.
 - Melted snow-water and its needed melting-heat is balanced with the uppermost soil-layer.

Consequences of the explicit surface-coupling:

- Lots of **explicit limitations** to avoid **unrealistic** or even **unphysical** increments
 - > arbitrary, artificial and often inconsistent manipulations
- Potential numerical instabilities due to feedback oscillations
 - 2dt-oscillations of T_{sf} and T_{sn}
 - Could largely be **compensated** by an **artificial flux-limiter** in COSMO
 - With a large model-time step of about 6min or more (as used with ICON):
 - Amplitudes up to more than 80K and some model crashes! (even with an active flux-limiter)
 - The problems mainly occur at grid-points related to the following properties:
 - **strong radiation forcing** (tropics)
 - a thin (developing or vanishing) snow-cover
 - frozen precipitation at warm surface | liquid precipitation at frozen surface
 - **disappearing** interception-water or snow-water
 - fractional snow cover (ICON: particularly with dynamical Sf and Sn sub-tiles)
 - freezing/melting of soil water or melting of snow

- ✤ Implicit surface-coupling with regard to T_{sf} and T_{sn}
- Implicit formulation of w_{sf}-evolution

Test-grid-point Kenia (+33.71_+7.89) :

- After-noon situation; tropical hot with strong radiation forcing
- 3 hour ICON-global test-run (R2B6, dt=6min) with
- implicit defaults of the new development version of SAT-formulation (mainly TERRA)
- Emulation of so far operational explicit surface coupling only for a special grid-point

old-sx-coupling: (isc=0; fes=0; ifb=0)

Strong 2*dt- oscillations with old coupling around noon and strong radiative forcing!

Resulting matrix of the extended linear system:

All <u>2 + k_soil budgets</u> are always present (even for f_sn=0 or f_sn=1)

• They are linearly coupled in the temperatures:

- Can easily be <u>tri-diagonalized</u> by matrix-operations and solved by the standard solver
- Partly reducible by parameters:

isc: degree of corrected implicit coupling of T_{Sn} to the soil- and atm. temperatures

fes: degree of considered flux-equilibrium in diagnostics of T_{Sf}

ifb: degree of implicitness for effective surface fluxes used in the heat budgets Default for test: isc=1; fes=1; ifb=1 (full implicit solution active) - modified for diagnostic points

altered

created

Test-grid-point Kenia (+33.71_+7.89) :

- After-noon situation; tropical hot with strong radiation forcing
- 3 hour ICON-global test-run (R2B6, dt=6min) with
- Implicit defaults of the new development version of SAT-formulation (mainly TERRA)
- Emulation of so far operational explicit surface coupling only for a special grid-point

Oscillations strongly reduced by <u>ifb=1</u> (implicit flux increments active for soil forcing)

Implicit increments of atmospheric transfer velocities: (already implemented)

Remaining oscillations may be due a hidden T_{sx}-dependency of the transfer velocity for heat U^H_s, which <u>controls</u> the virtual conductivities of SHF_{sx} and LHF_{sx}:

$$\partial_{T_{Sx}} [SHF]_{Sx}^{0} = -\left[\rho_{s} \underline{u}_{s}^{H}\right]^{0} \cdot C_{p} \qquad \qquad \partial_{T_{Sx}} [LHF]_{Sx}^{0} = -\cdot\left[\rho_{s} \underline{u}_{s}^{H}\right] \cdot f_{Sx}^{red} \cdot d_{T}q_{v}^{sat} \cdot L_{ev}\right] (T_{Sx}^{0})$$

$$\left[\left[u_{s}^{H}\right]^{0} \longrightarrow u_{s}^{H} \coloneqq \left[u_{s}^{H}\right]^{0} + \partial_{T_{Sx}} \left[u_{s}^{H}\right]^{0} \cdot (T_{Sx} - T_{Sx}^{0}) \right]$$

- The implicit heat budgets for Sf and Sn become <u>quadratic</u> in T_{Sx} :
- From solutions T_{Sx}^* of the <u>decoupled</u> versions of these implicit quadratic equations:

$$\begin{bmatrix} \mathsf{U}_{\mathsf{s}}^{\mathsf{H}} \end{bmatrix}^{*} = \begin{bmatrix} \mathsf{U}_{\mathsf{s}}^{\mathsf{H}} \end{bmatrix}^{\mathbf{0}} + \partial_{\mathsf{S}_{\mathsf{s}\mathsf{x}}} \begin{bmatrix} \mathsf{U}_{\mathsf{s}}^{\mathsf{H}} \end{bmatrix}^{\mathbf{0}} \cdot \left(\mathsf{T}_{\mathsf{S}\mathsf{x}}^{*} - \mathsf{T}_{\mathsf{S}\mathsf{x}}^{\mathbf{0}}\right)$$

- This updated transfer velocity $\left[\mathbf{U}_{s}^{H}\right]^{*}$ is used in the subsequent linear system.
- The factor of the **linear** T_{sx}-dependency of the transfer-velocity is estimated by registration:

$$\partial_{T_{sx}} \left[u_{s}^{H} \right]^{0} \approx \frac{\left[u_{s}^{H} \right]^{0} - \left[u_{s}^{H} \right]^{-1}}{T_{s}^{0} - T_{s}^{-1}} \qquad T_{s}^{:} = \left(1 - f_{Sn} \right) \cdot T_{Sf} + f_{Sn} \cdot T_{Sn}$$

- After-noon situation; tropical hot with strong radiation forcing
- 3 hour ICON-global test-run (R2B6, dt=6min) with
- implicit defaults of the new development version of SAT-formulation (mainly TERRA)
- Emulation of so far operational explicit surface coupling only for a special grid-point

Oscillations almost completely eliminated by Similar result but a bit larger daily amplitudes

ifb=1 + itv=1ifb=1 + itv=1 + fes=1 (not shown)

itv=1: full consideration of implicit T_sx-dependency in atmospheric transfer velocity

fes=1: full consideration of flux-equilibrium at the sf surface

Current state :

- **Major adaptations** in TERRA, TURBTRAN (and related interfaces) introduced into **ICON-branch**:
 - **Restructuring** the sequence of processes
 - **Removal** of various, now detrimental limitations all over the code
 - **Reformulations** related to variable-redistribution for dynamic snow-tiles
 - Generalization of snow-cover diagnostics
 - **Substitution** of previous descriptions by new formulations
 - o Implementation of new features
- Sanity-checks performed:
 - o numerically stable even for large time steps
 - o some **remaining oscillations** due to **phase-transitions of snow or soil-water**
 - o almost minor differences compared to operational version, but:
 - the so far **inconsistent** treatment of **rime as part of w_{sf}** had to be **removed!**
 - > positive effect of this feature no longer present!
 - consistent formulation of a 2-phase interception-store
 - ✤ together with the so far missing implicit formulation of w_{sf}-evolution

$$\begin{split} \underline{\text{New implicit and simultaneous incrementation of interception water:}}_{(partly implemented)} \\ \underline{W_{Sf} - W_{Sf}^{0}}_{\Delta t} &= \text{PWF}_{Sf} + \text{VWF}_{Sf} + \text{DWF}_{Sf} & \text{PWF}: \text{given precipitation-water flux-density}} \\ VWF_{Sf} &= -f_{Sf}^{cov}(w_{Sf}) \cdot \text{VWF}_{Sf}^{pot}(\mathsf{T}_{Sf}^{0}) &: \text{current water-vapour flux-density} \\ & \quad \text{explicit potential evaporation (negative for dew- or rime-fall, where } f_{Sf}^{cov}(w_{Sf}) = 1 \text{)} \\ & \quad \text{linear cover-function: } f_{Sf}^{cov}(0) = 0 \quad \boxed{f_{Sf}^{cov}(w_{Sf}^{max}) = 1} \quad \text{(for real evaporation)} \\ \\ DWF_{Sf} &= -f_{Sf}^{drp}(w_{Sf}) \cdot \text{DWF}_{Sf}^{ref} \quad : \text{current } \underline{drip-water flux-density} \\ & \quad \text{explicit reference value at } f_{Sf}^{dpr} = 1 \text{ (parameter of the scheme)} \\ & \quad \text{rational drip-function: } f_{Sf}^{dpr}(0) = 0 \quad \boxed{f_{Sf}^{dpr} - \underbrace{w_{Sf} \rightarrow w_{Sf}^{max} \rightarrow \infty}{}} \\ \end{aligned}$$

✤ Quadratic equation for $0 \le w_{Sf} \le w_{Sf}^{max}$; <u>automatically positive-definite and limited</u>

- Simultaneous consideration of all sources and sinks *
- VWF^{pot}_{Sx} still depends on previous surface temperature T^0_{Sf} *
 - No implicit coupling between hydrological and thermal equations yet! \triangleright
 - > Lower atmosph. BC: explicit VWF⁰_{Sx} and corrected SHF_{Sx} = SHF⁰_{Sx} + Δ THF_{Sx} !!

. .

Implicit freezing and melting of interception water and precipitation: (being implemented)

• At least for $T_{min}^{liq} \le T_{sf} \le T_{max}^{frz}$ liquid and frozen interception-water coexists with a smooth transition.

- Introducing LHF_{sf} and PHF_{sf} in decoupled T_{sf}-equation and solving this in <u>quadratic</u> approximation:
 - Correct and implicit treatment of liquid and frozen interception water
 - Final T_{sf} is in dynamical accordance with complete turnover of latent heat.

Next steps:

- Completion of running implementations related to interception water
- Running chain of test-cases
- Performing some code-optimizations in terms of vectorization
- Adding melting of snow and freezing/melting of soil-ice into the implicit heat budgets
- Incorporation of a multi-layer snow-model

1-st official ICON-release -> COSMO

- Introducing the extension with a decoupled, substantial and semi-transparent cover-layer, including
 - o the partitioning of fluxes into those related to B and C
 - expressions for the additional conductivity α_B^C and the additional heat capacity C_c :

 $THF_{C} - GHF_{C} = \left[\rho_{c} \boxed{c_{c}}\right]^{0} \frac{T_{Cm} - T_{Cm}^{0}}{\Delta t} \qquad T_{Cm} = \frac{1}{2} \cdot \left(T_{C} + T_{B}\right) \text{ linear vertical T-profile of R-layer}$

- $GHF_{C} = -\frac{\alpha_{B}^{C} \cdot \alpha_{B1}^{B}}{\alpha_{B}^{C} + \alpha_{B1}^{B}} \cdot (T_{C} T_{B1})$ $C_{c} \quad due \text{ mass of R-elements and interception water}$ $\alpha_{B}^{C} \quad due \text{ to exchange of SH and LR between B and C}$
- > based on an already developed prototype, present in an older test-version of COSMO!
- Iargely prepared just by the current implementations into ICON!
- removal of remaining conceptual deficiencies!
- significant impact on simulated properties!

 n cover layers including the surface of the dense soil (n=0) are connected by long-wave radiation interaction and sensible heat exchange

thermally decoupled roughness elements (shading)

DWD

6

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

• Only a part of the inner surfaces is connected to A by the resistance chain, the other part is for the inter- surface exchange

- A more advanced semi-transparent C-layer extension (by M. Raschendorfer) with parameterized heatconduction and heat storage of the full roughness cover (e.g. plant canopy) is being adapted from an existing test-version prepared last year within COSMO.
 - The final combination with the reformulated budgets will include all related partial development!
- 2) Experiment with the existing test-version in COSMO:
 - **o** COSMO-DE with lateral boundaries from ICON-EU
 - domain averaged daily cycles of near-surface variables
 - almost saturated soil due to long standing rain period before
 - o only for rather smooth surfaces: applied filter

Wetter und Klima aus einer Hand

almost no clouds due to high pressure situation + applied filter

diagnostic

already shown

last year

conditional

Thank you for attention!