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Motivation for research

Urbanization strongly modify the surface -
parameters (roughness, albedo, heat capacity, etc.) — A
which determine the specific urban climate - S roan pogtEiams
features — e.g. the urban heat island (UHI) — e 1] rs
RE.Y Ma?a i .m% m%g’m
For the megacities the influence of urban S <l = = t";”“,# ~
surfaces is accumulated over tenth of kilometers, B ooy U @ W
resulting in mesoscale climate anomalies,
extending to the ABL and interacting with o b
processes in lower troposphere (mesoscale 2 | [ ieseoe
circulations, convection, etc.) \_ ff\‘}:—" N
)| DN
The most of the urban climate studies are (&7
focused on the canopy-layer UHI, while the ,/' 1;7;
knowledge about other urban-induced climate "‘;] e ;7;’
effects, especially in the ABL, =
is fragmented and insufficient for making ey \,
climate-related conclusions (Oke et al., 2017) o



Moscow as test-bed for urban climate modelling

Key features of Moscow megacity
as place of urban climate research:

Biggest agglomeration in Europe
(= 17-10° people)

Flat and homogenous landscape around
the city

Continental climate with warm summer
and cold winter

Strong UHI with mean intensity of 2 °C
and maximum intensity up to 13 °C
(Lokoschenko, 2014)

Spatial building features (high-rise
blocks of flats, etc.)

Good observation network
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Modelling framework

COSMO-CLM regional climate model

Simulations for 10 summer seasons with 1 month of spin up,
main focus further for summer 2014

3 steps of dynamical downscaling (12 km — 3 km — 1 km)

Boundary conditions for the fist domain from ERA-Interim reanalysis
+ spectral nudging for U, Vand T

Tuned model configuration including reduced turbulent mixing in
stable condition according (Cerenzia et al., 2014) [tkhmin = tkmmin =
0.1, pat_len = 100] and new evaporation & canopy schemes

(Schulz, 2016; Schulz, Vogel, 2017) [itype_evsl = 4; itype_canopy = 2]

TERRA_URB urban scheme (Wouters et al., 2015; 2016)
=  SURY (Semi-empirical Urban canopy parameterization)
= Tile approach for urban/rural area

= Anthropogenic heat flux calculated from mean annual
value with “climatological” annual and daily cycles according
(Flanner, 2009)

Numerical experiments with urban scheme
switched on (URB) and off (noURB)
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Urban canopy parameters

Required urban canopy parameters for TERRA_URB:

Urban area fraction (= impervious surface fraction, ISA)
Annual-mean anthropogenic heat flax (AHF)

Building area fraction

Building height H

Street canyon aspect ration (H/W)

1) GIS-processing of
OpenStreetMaps data
(Samsonov et al., 2015)

]

2) Averaging over given
model grid cells

20 40 60 80 100 10 15 20 25 30 35

Urban area fraction [%] Building height [m]

3) Calculation of the required parameters
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Model-to-observations comparison
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Vertical structure of the UHI

Daily-mean UHI

700

Mean evening UHI
(17 UTC/20 MSK)

Mean nocturnal UHI
(0 UTC/03 MSK)

600 -

500 -

Height a.s.l, m
S
3

300

-
o

@
S

-

1’0

Crossover

- — effect
5 (Duckworth,
! Sandberg, 1954; |
Bornstein 1968)

1o

0 -

2004 / ! M\ r
/ A ,/\/\ poit
/\/ ,’\\/\/\\,/’ Y \!

\‘ o
\/
Citx
20 40 60 80 -80 -60 -40 20 40 60 80 80 -60 -40 -20 0 20 40 60 80
Distance (North — South), km Distance (North — South), km
-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4
AT, °C AT; °C AT, °C

100

Modelling results qualitatively agrees with the estimates of Moscow UHI vertical extent based on contact
measurements (Lokoshchenko et al., 2016), remote sensing by ground-based temperature profilers (e.g.
Khaikine et al., 2006) and satellite-based remote sensing data (Gorlach et al., 2017; Kislov et al., 2017)



Vertical structure of the UHI

Resent experiment
based on MTP-5

temperature profilers:

* Observations at three
points (one urban and
three suburban)

* Vertical range:
0-1000 m

* Period of observations:

17 April = 3 July 2015

Height over the surface [m]
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Vertical profiles of mean temperature
deviation from the top level (AT)
according to MTP-5 measurements for
nocturnal cases with pronounced UHI

during 17 April-3 July 2015



Urban heat plumes
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Vertical cross-section and maps for urban-induced temperature anomaly (AT = Tygrg — T,,urg) averaged
over summer 2014, for nocturnal hours (1-2 UTC / 3-4 MSK) with prevailing northern wind



Urban heat plumes

700
600 -
500 1
E
@
© 400 -
ofed
L
>
%]
o
300 1
200 1,
City
100 - - I

80 60 -40 20 0 20 40
Distance (North — South) [km]
2 -1 0 1 2 3 4
AT [K]

AT [K] - - AT K]
Vertical cross-section and maps for urban-induced temperature anomaly (AT = Tygrg — T,,urg) averaged
over summer 2014, for nocturnal hours (1-2 UTC / 3-4 MSK) with prevailing southern wind



Urban effect on the lapse rate

Average over Average over nocturnal cases
nocturnal cases N with northern wind
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Urban-induced lapse rate anomaly Ay (where y = —dT/dz) calculated between two lowest model
levels (10 n 35 m), averaged over summer 2014 for nocturnal hours (1-2 UTC / 3-4 MSK)
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Urban effect on the wind speed
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Urban breeze effect (evening)

;Qutflow nbiv‘erge’n&, Outf[ovy;

! (Oke et al., 2017)
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Urban-induced anomalies of the wind (A\7, black arrows) and its radial component (AV,,q4, arrows)
averaged over summer 2014, for evening hours (15-16 UTC / 18-19 MSK) with low wind speed
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Urban breeze effect (night)
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Urban breeze effect (night)
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Urban effects on precipitation & cloudiness

1 summer season (2014)

=

10 summer seasons (2007-2016)
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Urban effects on precipitation & cloudiness

Daily-mean anomaly
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Urban effects on precipitation & cloudiness

Modelling results for summer precipitation and daytime
cloudiness are consistent with various observations for Moscow
(Climate of Moscow..., 1969, in Russ.; Stulov, 1993, Romanovy,
1999) and overall hypothesis of the urban-induced amplification
of the moist convection (e.g. Bornstein, Lin, 2000; Dixon, Mote,
2003; Han et al., 2014, Zhu et al., 2017)
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Summer precipitation amount in Moscow Longitude E
region according to the dense network of Summertime daytime cloudiness anomaly
weather stations existed on 1950t according to satellite images

(Climate of Moscow..., 1969, in Russ.) (Romanov, 1999; modified in Oke et al., 2017)
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Abstract: Urbanization leads to distinct meteorological features of urban environments, and one the
best-known is the urban heat island (UHI) effect. For megacities, these features become mesoscale
phenomena (scale > 10 km) that are amplified by the tropospheric feedbacks, and have substantial
implications on human well-being. For the first time, a three-dimensional statistical description of
the megacity-induced meteorological effects extending towards the lower troposphere for summer is
acquired on a quasi-climatological timescale (a decade) based on high-resolution (1 km) simulations
for Moscow with the COSMO-CLM model with and without its urban canopy model TERRA_URB.
Our results confirm the features from previous observational and modeling studies, including the
UHT itself, the cooling effect above established by the cross-over effect, the urban dry /moist islands
and the urban breeze circulation. Particularly, the UHI shows a strong diurnal variation in terms
of intensity and vertical extent between daytime (~0.5 K/#1.5 km) and nighttime (>3 K/~150 m).
We have discovered a systematic veering in the downwind shift of the UHI spatial pattern established
by the Coriolis effect, and an enhanced stable stratification of the rural surroundings established by the
urban plumes further downwind. Finally, extending the analysis to multiple summers demonstrates
a substantial increase in summer precipitation (up to +25%) over the city center and its leeward
side. These urban-caused mesoclimatic effects need to be taken into account in weather and climate
services, including the design of future megacities.

Keywords: urban climate; urban heat island; urban dry island; urban breeze; regional climate
modeling; COSMO; crossover effect; urban plume; urban precipitation enhancement



Conclusion

COSMO-CLM model, coupled to TERRA_URB urban scheme and supplied by realistic GIS-derived
urban canopy parameters, has successfully simulated summer UHI of Moscow megacity, its
spatiotemporal variability and its vertical structure.

The model has simulated a variety urban climate effects, known before from episodic and
fragmented studies - urban heat plumes, urban breeze circulation, urban effects on precipitation
and cloudiness.

Moreover, the new urban climate effects were discovered: the enhanced stable stratification
downwind to the city and nocturnal anomaly of cyclonic vorticity over the city

Modelling results allows to make possible the further investigation of the listed effects with high
spatial resolution towards to climatological timescales.

Presented results shown the importance of the urban-induced mesoscale effects and the urban-
troposphere feedbacks (both “bottom-up” and “down-top”) in various applications, including the
weather and air quality forecasts and design of the future megacities.

o This is a motivation for implementation of the urban canopy schemes to NWP COSMO
model, COSMO-ART and ICON LAM

Thank you for your attention!
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Urban effect on precipitation & cloudiness
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Input parameters of urban canopy
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Input parameters of urban canopy

Urban fraction

Urban fraction from ISA from EXTPAR Urban fraction derived
EXTPAR (Globcover) (fine resolution) from OSM data
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Input parameters of urban canopy

AHF

% Mean annual value for Moscow

w i (Stewart, Kennedy, 2015) ﬁ
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Model verification: standard options

Summer 2010, «warm»
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Model verification: tuned options

Summer 2010, «warm»
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