

Evaluation of the COSMO model with redesigned physics data structure and ICON physics components

Jürgen Helmert, U. Schättler, M. Köhler, H. Reich, B. Fay, J.-P. Schulz, Ch. Schraff, M. Baldauf,
M. Raschendorfer, Ch. Gebhardt, U. Blahak, K. Stephan, J. von Schumann, A. Steiner,
Ch. Koziar, Th. Hanisch, F. Fundel, U. Pflüger, D. Mironov,
B. Ritter, R. Potthast, M. Buchold, G. Zängl, D. Majewski

- Strategic goal: COSMO model with redesigned data structure and improved physics components from ICON
- Main aims •
 - Improvement of COSMO model forecast skills in boundary-forcing from ICON,
 - Reduction of code maintainance for unified physics components
- Development steps:
 - Technical implementation: new interfaces, merge and adaption
 - Numerical experiments: Hindcasts, BACY, NUMEX
 - Verification: web-based app using feedback files from model runs

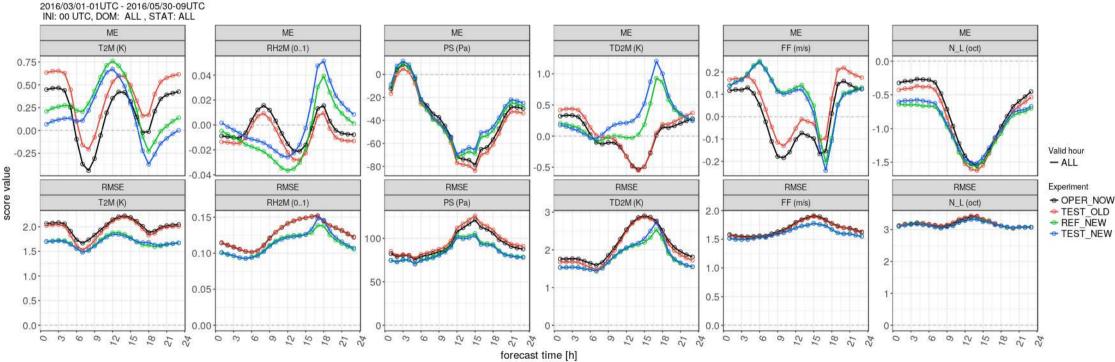
Physics in COSMO 5.5

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Process	Scheme	Model	
Radiation	RRTM (later with McICA & McSI)	ICON	
Radiation	δ two-stream	COSMO	
Sub-grid scale orographic drag	blocking, GWD	ICON/COSMO	
Microphysics	prognostic: water vapor, cloud water, cloud ice, rain and snow	ICON/COSMO	
Convection	mass-flux shallow and deep Tiedtke-Bechtold	ICON	
	Tiedke, (Tiedtke-Bechtold)	COSMO	
Turbulent transfer	prognostic TKE	ICON/COSMO	
Land	tiled TERRA + soil moisture analysis	ICON	
	TERRA	COSMO	

- Hindcasts: forecast only runs using analysis files from hard disk
 - Advantage: very fast, several months in a couple of hours, including verification, good for sensitivity studies
 - Disadvantage: no data assimilation, i.e. no feedback from modified physics on the analysis
- **BACY**: data assimilation and forecast runs on hard disk
 - Advantage: much faster than experiments with database access
 - Disadvantage: very hard disk space consuming, only selected periods can be investigated
- NUMEX: data assimilation and forecast runs with database access
 - Advantage: quasi operational setup, no limitation of the period
 - Disadvantage: depending on the database could be very slow

/TUNING/	OPER.	_NOW	TEST_OLD	REF_NEW	TEST_NEW	TEST_I300m	Explanati	DWD		
tkhmin	0.4		0.4	0.75	0.75	0.75	-	ndcasts Deutscher Wetterdienst Wetter und Klima aus einer Hand		
tkmmin	0.4		0.4	0.75	0.75	0.75	-	Wetter und Klima aus einer Hand		
rat_sea	20.0		20.0	7.5	7.5	7.5	-]		
pat_len	500.0		500.0	750.0	750.0	750.0	-			
tur_len	150.0		150.0	500.0	500.0	300.0	-	Model sensitivity study using		
a_hshr	0.2		0.2	2.0	2.0	2.0	-			
c_soil	1.0		1.0	1.75	1.75	1.75	-	several configurations		
wichfakt	0.0		N.A.	N.A.	N.A.	N.A.	-	C C		
/PHYCTL/	OPER	_NOW	TEST_OLD	REF_NEW	TEST_NEW	TEST_I300m	Explanati	 Adaptions needed in 		
itype_vdif	-2		-1	1	1	1	-	COSMO Namelist		
ltkeshs	.FALSI	E.	.FALSE.	.TRUE.	.TRUE.	.TRUE.	-			
itype_sher	1		1	0	0	0	-	Int2lm Namelist		
imode_tran	1	1	· .][]	_					
imode_turb	1	/CON		PER_NOW		W TEAT N		Ination		
icldm_tran	0			EST_OLD	REF_NE					
lconf_avg	.TRL	Ibdclim .TRUE.		.TRUE.	.TRUETRUE. Use		the climate mode because we run for 3 months			
itype_albedo	3	Isso		TRUE.	.TRUE.	.TRUE.	sso	STDH and SSO_SIGMA are used by new schemes		
itype_aerosol	1	itype	albedo 3	}	3	3	-	-		
itype_root	1	itype_aerosol			2	2	2 ac	vates the Tegen climatology		
itype_heatcond		1 itype ndvi)	0	1	1 ac	vates a yearly cycle for PLCOV and LAI based on an averaged ndvi ratio.		
itype_evsl	2	itype_root)	0	4		es the input from the external data set without modifications. This is done in the CQSMO-Model nov		
cwimax_ml idiag_snowfrac	-	lemis		FALSE.	.FALSE.	.TRUE.		u map from the external parameters for the thermal radiative surface emissivity.		
lemiss	- .FAL	Istom		FALSE.	.FALSE.	.TRUE.		a map from the external parameters for the minimum stomata resistance of plants.		
Istomata	.FAL.						lanc			
Imulti_layer	TRUE		N A.	N A	N A	N.A.		U. Schät		
/IOCTL/	OPER			REF_NEW	TEST_NEW		Explanati	j		
Ibdclim	TRUE		TRUE.	.TRUE.	.TRUE.	TRUE.		J. Helmert et al., ICCARUS 2018		
ibaciini			.INUL.		. INVE.	. INOL.	-			

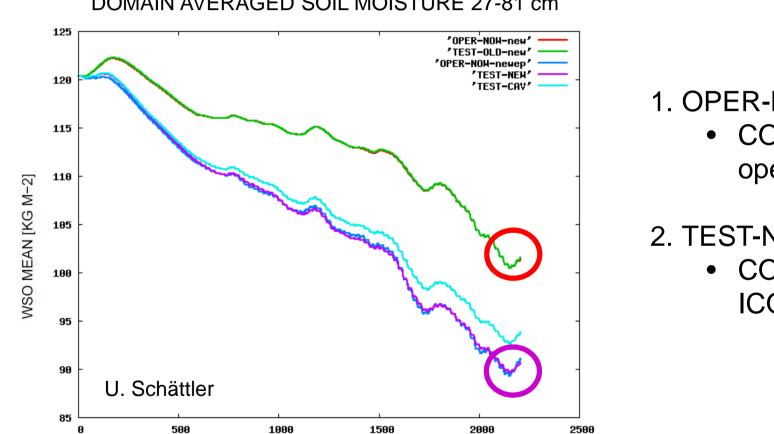

- sensitivity study using configurations
- ons needed in
 - **DSMO** Namelist
 - 2lm Namelist

U. Schättler

Numerical experiments - Hindcasts

- Hindcast period March, April, May 2016
- Sensitivity study for several configurations
- Mean error and RMSE for selected parameters

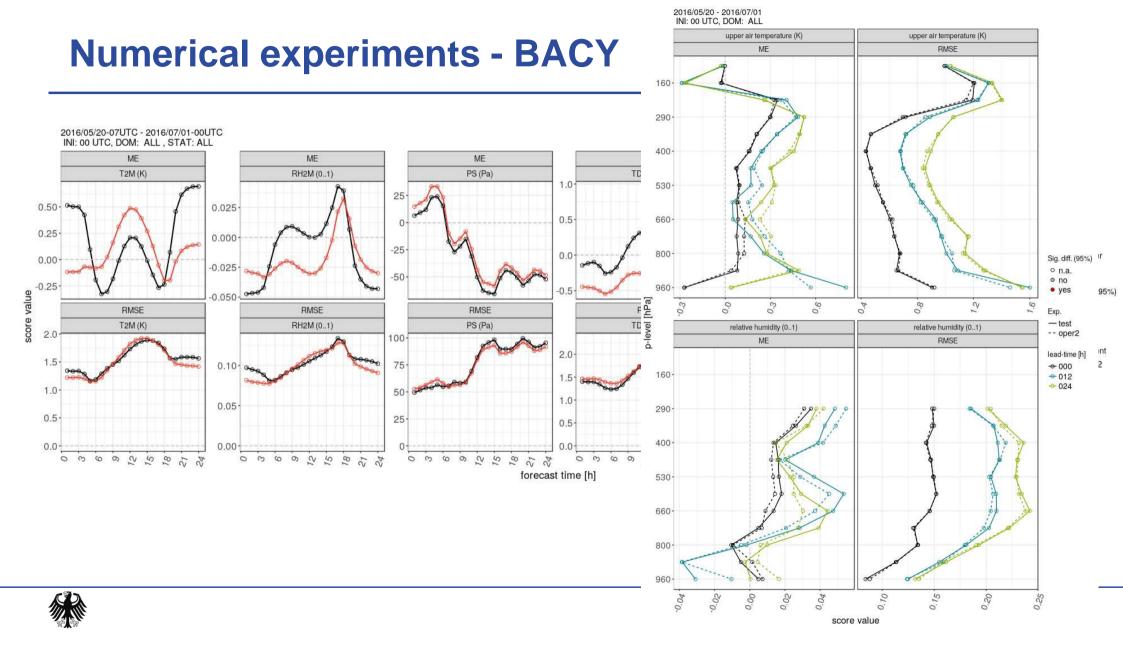
Numerical experiments - BACY



Binary Namelist				
V5.4 OPER_NOW	March	April	Мау	BACY
			_	
V5.5R TEST_OLD	March	April	May	NUMEX
				DACY
V5.5 TEST_NEW	March	April	May	BACY

Numerical experiments - BACY

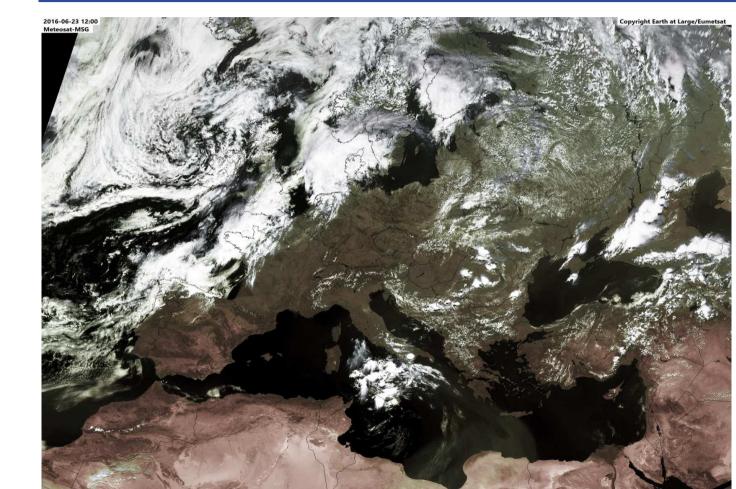
DOMAIN AVERAGED SOIL MOISTURE 27-81 cm


1. OPFR-NOW: wet soil

• COSMO 5.4 with operational configuration

2. TEST-NEW: dry soil

 COSMO pre5.5 with **ICON** setup



J. Helmert et al., ICCARUS 2018

Case study 23.06.2016

- Summer case with less clouds in central Europe - avoid cloud impact
- Considering
 - Global radiation
 - Soil moisture
 - Sensible heat flux
 - Latent heat flux
 - Bowen ratio

Case study 23.06.2016

980

940

900

860

820

780

740

700

660

620

580

540

500

50.0

45.0

40.0

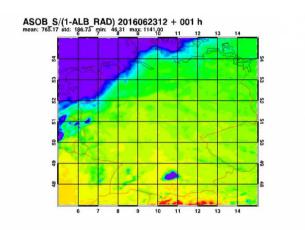
35.0

30.0

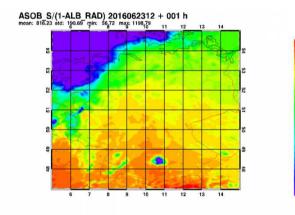
25.0

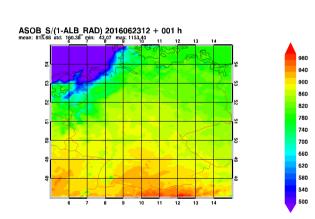
20.0

15.0


10.0

5.00


Deutscher Wetterdienst Wetter und Klima aus einer Hand



OPER-NOW

TEST-NEW Global Radiation

ICON-EU

980

940

900

860

820

780

740

700

660

620

580

540

500

50.0

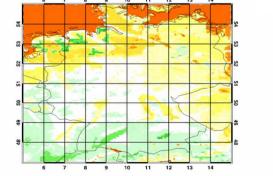
45.0

40.0

35.0

30.0

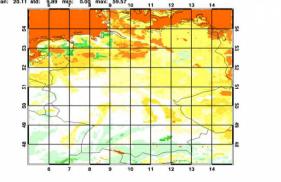
25.0

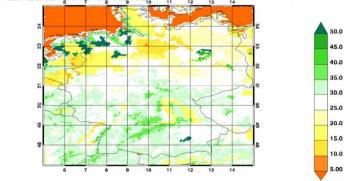

20.0

15.0

10.0

5.00


{ DWD 20160623 0 0-0 1 depthBelowLandLayer 27 W_SO kg m-2 } * 0.19 mean: 22.38 std: 10.34 mjn: 0.00 max; 58.97,0 11 12 13 14


11

Soil Moisture LEV5

{ DWD 20160623 0 0-0 1 depthBelowLandLayer 27 W_SO kg m-2 } * 0.19 mean: 20.11 std: 9.89 mip: 0.09 max: 59.57 10 11 12 13 14

{ DWD 20160623 0 0-0 1 depthBelowLandLayer 27 W_SO kg m-2 } * 0.19 mean: 25.31 std: 10.49 mJr: 0.00 max; 70.06 10 11 12 13 14

Case study 23.06.2016

0.000

-20.0

-40.0

-60.0

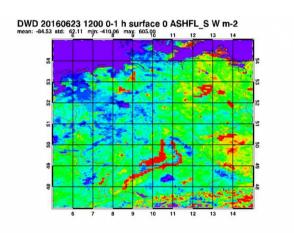
-80.0

-100

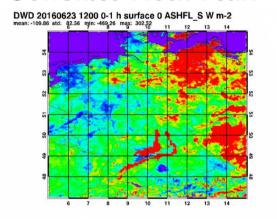
-120

-140

-160


-180

-200


Deutscher Wetterdienst Wetter und Klima aus einer Hand

OPER-NOW

TEST-NEW Sensible Heat Flux

ICON-EU

0.000

-20.0

-40.0

-60.0

-80.0

-100

-120

-140

-160

-180

-200

0.000

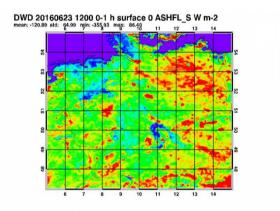
-50.0

-100

-150

-200

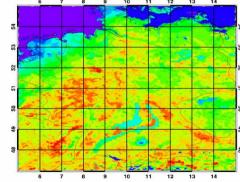
-250

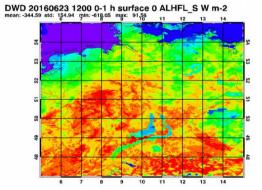

-300

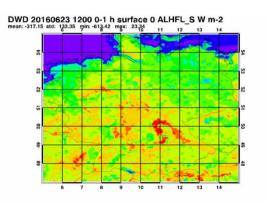
-350

-400

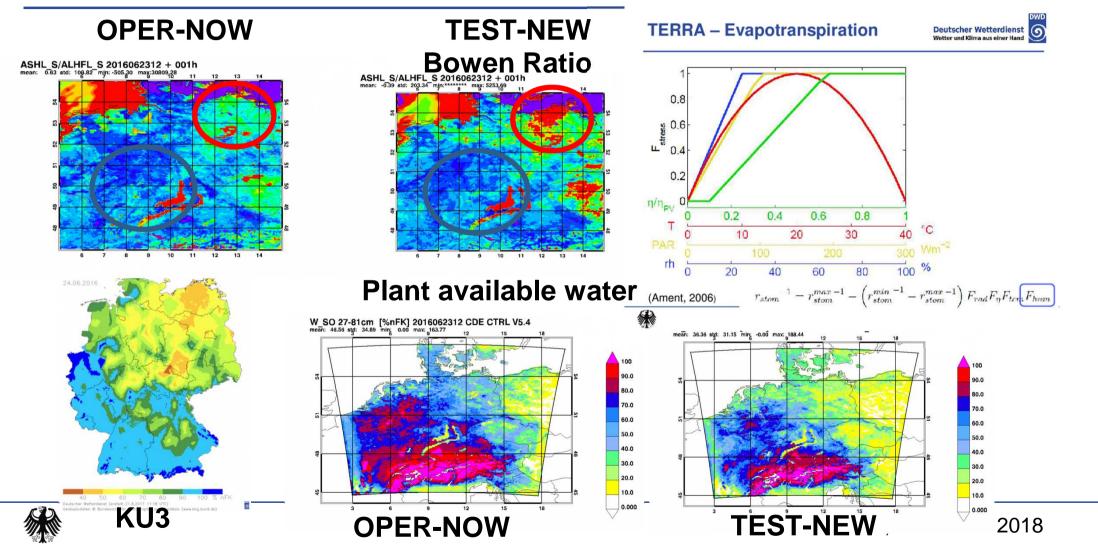
-450


-500


-20.0 -40.0 -60.0 -100 -120 -120 -140 -160 -180 -200


0.000

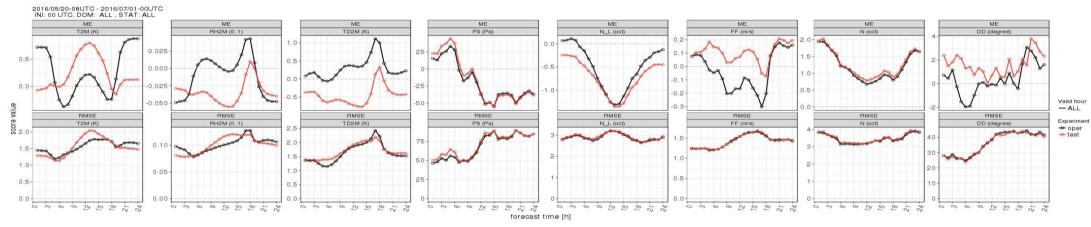
DWD 20160623 1200 0-1 h surface 0 ALHFL_S W m-2 mean: -317.12 std: 139.19 min: -601.78 mgx: 144156 11 12 13 14



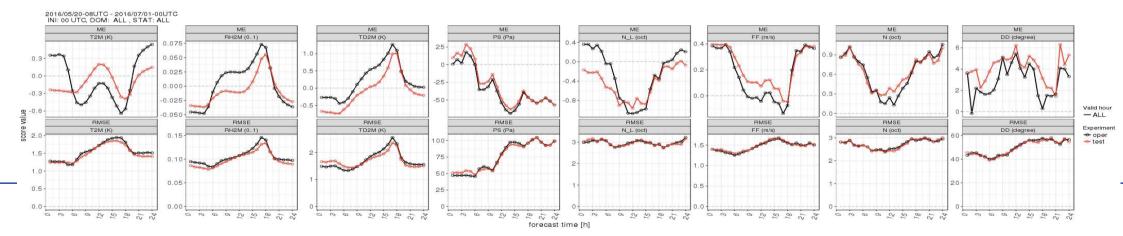
0.000 -50.0 -100 -150 -200 -250 -300 -350 -400 -450 -500

Case study 23.06.2016

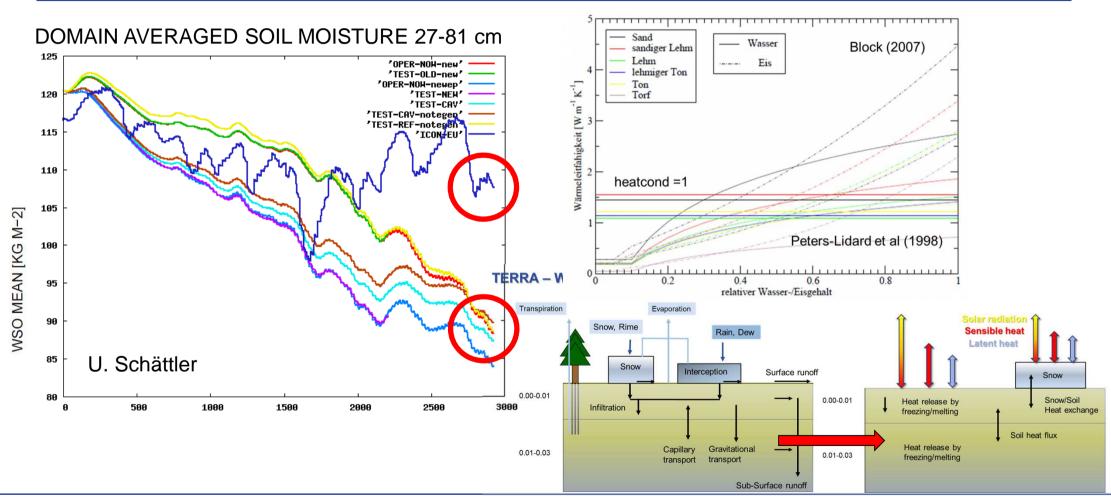
Deutscher Wetterdienst Wetter und Klima aus einer Hand



BACY - Verification


Deutscher Wetterdienst Wetter und Klima aus einer Hand

North East


South West

Numerical experiments

Deutscher Wetterdienst Wetter und Klima aus einer Hand DWD

6

J. Helmert et al., ICCARUS 2018

....

Numerical experiments – Pseudo :

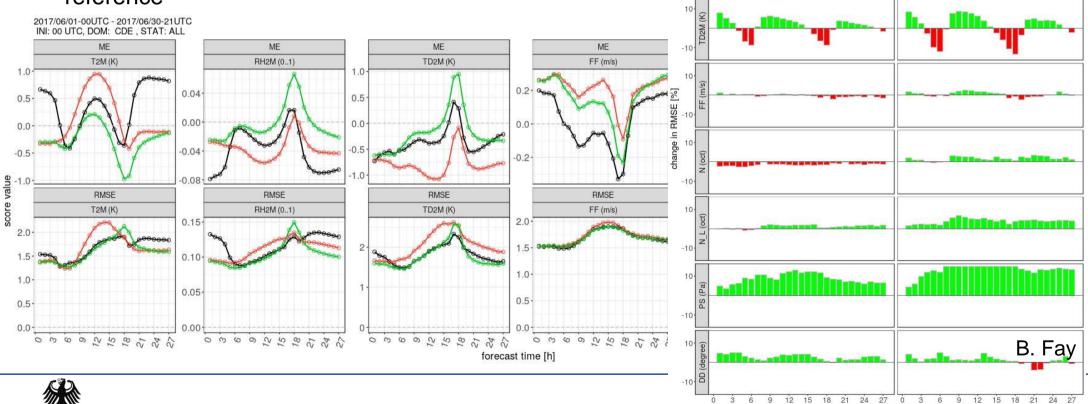
Forecasts initialized from 2017/06/01 to 2017/06/30 Change in RMSE [%]

lead-time [h]

GER

COSMO better Exp_10521 better

10

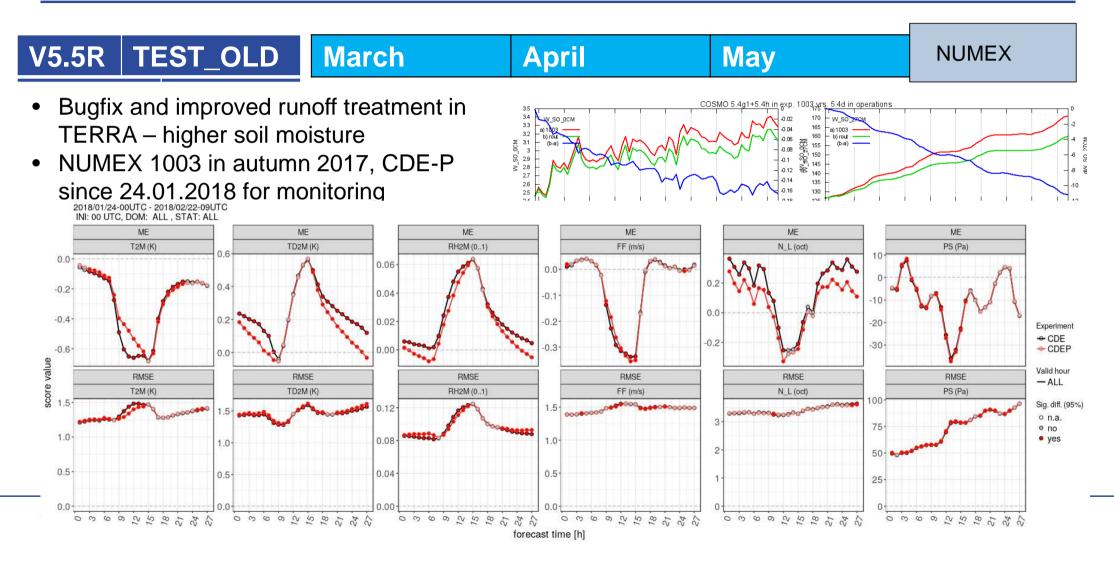

-10

10

-10. 4

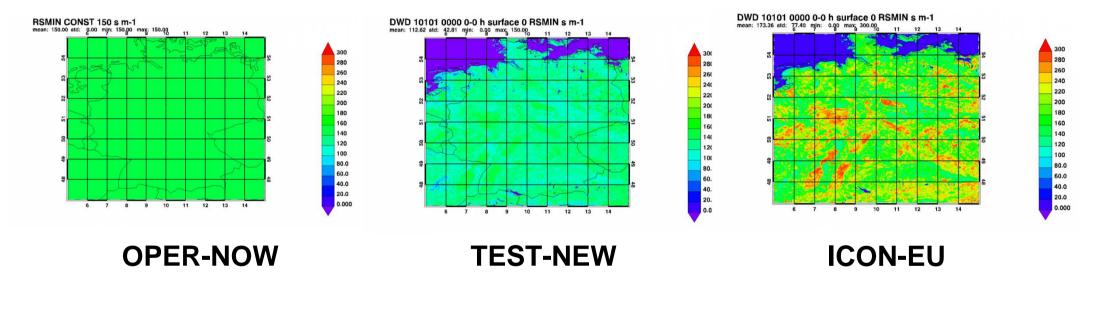
CDE

- SMA emulation: Replacing COSMO-D2 soil moisture field with interpolated field from ICON-EU
- Verification of the forecasts for June 2017 against reference


- Strategic goal: COSMO with redesigned data structure and improved physics components from ICON
- Radiation scheme and TERRA configuration differs between COSMO and ICON
- Several numerical experiments (Hindcasts, BACY, NUMEX) using different configurations have been performed
- Soil moisture has larger impact with ICON physics as pseudo-SMA experiment and ICON-EU without SMA show
- Decision for using COSMO with redesigned data structure and ICON physics in a conservative configuration, other options remain possible

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Final configuration



External parameters

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Min. Stomata resistance

