

COSMO-Model Episode VI.0 The Last Unification

Ulrich Schättler Deutscher Wetterdienst BU Research and Development Department for Numerical Modelling

The Story so Far

Current (public) Versions

- → After some struggling we could release the following versions last August to the public
 - \rightarrow COSMO-Model 5.05 (from 23rd February 2018)
 - → INT2LM 2.05 (from 26th February 2018)
- → In the meantime work went on and we have some preliminary versions for the COSMO-Model (not yet officially distributed to the public)
 - 22nd June 2018 → 5.05a:
 - → 5.05b: 14th December 2018
 - → 5.06: 27th February 2019
- Tests with the COSMO NWP Test Suite are going on. A public release can be expected soon.

The Latest Versions

Version	Date	Contents (Highlights)	Results Changes
5.05a	22.06.18	 Dynamics: 2nd order Bott scheme together with deformational correction method Porting additional parts to GPU: diagnostics, output Changes to prepare implementation of Radar Forward Operator 	if used no no

The new Bott scheme is activated with y_scalar_advect = 'BOTTDC2' Stability behaviour is similar to 'BOTT2_STRANG', but with less computing time.

Deutscher Wetterdienst Wetter und Klima aus einer Hand

The Latest Versions

Version	Date	Contents (Highlights)	Results Changes
5.05b	14.12.18	 Porting additional parts to GPU: LHN, nudging, lbdclim, fixes in physics Bug fix in turb_tran (also implemented in 5.05_1 and 5.05a_1). This fix avoids some crashes. 	no slightly

Where We are Now

Deutscher Wetterdienst Wetter und Klima aus einer Hand

The Current Version

Version	Date	Contents (Highlights)	Results Changes
5.06	27.02.19	 COSMO-Model in single precision GPU: CLAW directives for turbulence; some more fixes Mire parameterization Data assimilation (technical; GNSS; LHN) New wind gust tuning (itype_diag_gusts=5) Lockfile mechanism 	no no yes no no no

Changes of results are only numerically!

Mire: the expression eai(i) / sai(i) is replaced with a local variable, which is 1.0 in case of mires. This changes order of evaluation in the next expression (even if mire param. is not used)

a * b * eai(i) / sai(i) VS. a * b * zloc

COSMO-Model in Single Precision

Fixes in sfc_terra:

- → A climate run for 1999 has been performed in single and in double precision (Erwan Brisson, Uni Frankfurt)
- Large differences in snow variables in mountainous areas and in the beginning of spring
- → Replaced some occurrences of eps_soil (= 1.0E-6_wp) by

```
eps_temp = MAX(1.0E-6_wp, 500.0_wp*EPSILON(1.0_wp))
```

with

```
EPSILON(1.0_sp)=1.192E-7 and EPSILON(1.0_dp)=2.2E-16
```

- Work done by MCH some years ago was lost when implementing ICON Version into COSMO
- → Replaced now all EPS where necessary

COSMO-Model in Single Precision

- Interface to RTTOV: RTTOV and libradiance require double precision variables
 - → Modified interface to libradiance accordingly
 - But only for synthetic satellite images (lsynsat); not for use within data assimilation (lobsrad)
- Computation of lightning potential index (LPI)
 - modified convergence criterion for Newton-method to find zeros of a function f(p) from

ABS(f/f') < 1.0E-2 to f(p) < 1.0E-6

Clipping for cloud variables in radiation_utilities.f90: negative values occured in single precision computations!

Using the single precision version still is on your own risk!

Physical Parameterizations

- → Mire: The approach of Alla Yurova et al. has been implemented (technical work) and tests done by Jürgen Helmert: see WG3b presentation on Thursday!)
 - itype mire
 - $\rightarrow 0$: no parameterization (default)
 - →1: Approach from Alla Yurova
- Turbulence: some technical modifications due to implementing the COSMO modules back to ICON
 - → Bug fix for itype vdif=+1 (vertical diffusion after physics): pass correct values of a blocked variable to vertical diffusion.
 - > Note that only itype vdif=-1 is recommended to use! We still cannot guarantee that itype vdif = 0/1 are working correct!

Status of 5.06

- Version implemented in DWD VCS on February 27th
- ➔ Problems with the Technical Test Suite (a compiler bug!) can now be avoided
- Documentation (Release Notes; update of User Guide) has to be finished (delayed because of investigating problems with TTS)
- Test binaries on cca (EMCWF) are installed and the NWP Test Suite is now running
- The only change to version 5.05 is the usage of the new Bott scheme (y_scalar_advect='BOTTDC2')
- ➔ We do have a good hope that the results will be ok and we can release version 5.06 soon.

There will also be a new version of INT2LM:

Version	Date	Contents (Highlights)	Results Changes
2.06	29.03.19 (most probably)	 Introduce external parameter field for skin conductivity Introduce option to read slope of orography 	no no
		 (S_ORO) Interpolate all levels from hhl_in to hhl_gl (avoids crashes when going from COSMO) 	for GRIB2
		 D2 to a finer grid) Option to use of NETCDF4 for writing 	no

The Last Unification

Ongoing Developments in COSMO

- ➔ Integration of the Radar forward operator (EMVORADO)
- ➔ Higher order horizontal discretizations (WG 2)
- COSMO-EULAG: new dynamical core based on EULAG
- Urban module: tests in PT AEVUS are still ongoing
- ➔ Introducing a skin temperature formulation
- → Including work from PP $T^2(RC)^2$ (new cloud optics, new aerosol inputs, ...)
- ➔ Ground water runoff (by Linda Schlemmer)
- → GPU port of Tiedtke-Bechtold convection

and more technical adaptations and issues

Work Done by CLM

COSMO (NWP) and COSMO (CLM) will be re-unified once again for 6.0.

Highlights of the CLM developments are:

- Restart files in NetCDF format
- ➔ Additional diagnostics in the output
- → Work in TERRA (fixes in multi-layer snow model)
- More tuning parameters
- ➔ Additional fixes and technical changes
- Contributions from COSMO-crCLIM (GPU/CPU version by ETH Zürich)

"Project Schedule"

- Implementing COSMO Episode VI.0 will be done in several substeps (5.06a, \rightarrow 5.06b, etc.). A precise plan is not yet available.
- There will be a discussion in the CLM SUPTECH meeting on Friday.
- → If we say "Autumn 2019" you can expect it for ICCARUS 2020 (hopefully).
- After this version we will only do "perfective maintenance" (bug fixes, technical optimizations, etc.)
- → DWD will replace the COSMO-Model during 2020 by ICON-LAM. It could be that we never will implement COSMO Episode VI.0
- But support will go on until all users have migrated to ICON-LAM

Future of COSMO and ICON

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Going to

The Dark Side of the Force ?

A domain of evil, it is. In, you must go.

The COSMO and ICON Communities (as I see it)

- Infrastructure is rather different (groups, models, workflows) \rightarrow
- Two (separate) groups with a common interface at DWD
- Taking a look to the early meetings / discussions, I had the opinion there was \rightarrow fear of a hostile takeover on both sides
- → Worlds are not clashing! There is the chance to take the best of both worlds! For example:
 - ICON is the more powerful (and better) simulation model
 - COSMO has the better documentation (model documentation, release) notes)
- → ICCARUS and ICON Developer Meeting (spring) will be joined next year

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Proposal: Changes to the (COSMO) Workflow

- All development work will be organized by a common git repository
- There is an icon-cosmo-master below the icon-nwp-dev (for global mode)
- It is investigated whether a gitlab server can be put up at DKRZ to organize the common developments
- Note: All these things are still under discussion!

CALM YOU SHALL KEEP and MAY THE FORCE BE WITH YOU