COSMO-crCLIM: a joint effort in developing a GPU/CPU version of COSMO-CLM

Marie-Estelle Demory¹, S. Sørland¹, N. Ban¹, C. Charpilloz^{1#}, O. Fuhrer³, L. Hentgen¹, M. Kraushaar⁴, X. Lapillonne³, D. Leutwyler^{1*}, S. Omlin⁴, K. Osterried², D. Regenass¹, L. Schlemmer^{1\$}, C. Schär¹, C. Steger¹, J. Vergara-Temprado¹, C. Zeman¹

1. Institute for Atmospheric and Climate Science, ETH Zürich

- 2. Center for Climate Systems Modeling (C2SM), ETH Zürich
- 3. Federal Office of Meteorology and Climatology MeteoSwiss
- 4. Swiss National Supercomputing Centre (CSCS)

[#]now at University of Geneva; ^{*}now at Max Planck Institute for Meteorology; ^{\$}now at DWD

From COSMO to COSMO-crCLIM

Credit: K. Osterried

How does COSMO-crCLIM differ from COSMO?

Technical development:

- Adapted from COSMO-POMPA (Fuhrer et al, 2014) used at MeteoSwiss for NWP:
 - Runs both on CPU and GPU
 - Uses the C++ dycore
- Runs in climate mode
- Explored bit-reproducibility between CPU and GPU versions

Schär et al, BAMS, submitted

COSMO-crCLIM: faster - cheaper

- 4x faster on 16 GPU nodes than on 16 CPU nodes
- Use of C++ dynamical core on GPU => huge gain in speed

COSMO-crCLIM: faster - cheaper

How does COSMO-crCLIM differ from COSMO-CLM?

New development for science:

- Implementation of a new soil hydrology scheme (Schlemmer et al, 2018):
 - a zero flux at lower boundary (no free drainage)
 - a diagnostic water table
 - a groundwater discharge dependent on subgrid-scale orography
 - a flux correction of water transport (to conserve mass)
- => now implemented in COSMO-POMPA, being validated at high resolution D. Regenass's talk at 14:30
- Switch to the AeroCom aerosol climatology to replace the Tanré-climatology
- A new calibration based on Bellprat et al, 2012, 2016

Temperature biases (K)

Credit: S. Sørland

 Implementation of clear-sky SW/LW radiation fields – to evaluate effect of clouds on energy budget

	Cloudy (standard)	Clear-sky (new)
Time-ave net SW at surface / TOA	ASOB_S / ASOB_T	ASOB C _S / ASOB C _T
Net SW at surface / TOA	SOBS / SOBT	SOBCS / SOBCT
Time-ave net LW at surface / TOA	ATHB_S / ATHB_T	ATHBC_S / ATHBC_T
Net LW at surface / TOA	THBS / THBT	THBCS / THBCT

SW Cloud Radiative Effect (ASOBC_S – ASOB_S)

Over Tropical Atlantic, 2km resolution

-600

-300

-200

-100

-400

-500

Low-level cloud cover fraction (CLCL)

W/m2

Advantages of COSMO-crCLIM

- Runs in climate mode on GPU => faster/cheaper
- Updated physics and enhanced output
- ⇒ can increase the horizontal resolution to convection-resolving scales at continental scale at reasonable cost
- ⇒creates a seamless climate prediction model able to perform **climate change simulations** at hydrostatic scales at 50-12 km (CORDEX project) and non-hydrostatic scales down to 2 km (crCLIM project)

crCLIM project: Convection-resolving climate simulations at continental scale

- Two-step one-way nesting:
 ERA-Interim ⇒ 12 km ⇒ 2.2 km
- Run over two domains:
 - Decade simulations over large European domain (e.g. Leutwyler et al, 2017)
 - Alpine domain (FPS simulations)
- <u>Challenge</u>: large output volume, can only save small set of variables, cannot save at higher frequency than hourly
- =>higher temporal output (e.g. minutes) diagnosed on-the-fly using file system interface (SimFS) to generate statistics of high-impact events and their changes under global warming

Precipitation cell tracking

Credit: S. Rüdisühli; http://crclim.ch

CORDEX at 12-25 km resolutions

COSMO-crCLIM involved in:

- EU-PRINCIPLES (EURO-CORDEX domain)
- CORDEX-CORE (South Asian domain) together with CLM community for other domains

DJF precipitation changes (RCP8.5)

JJA precipitation changes (RCP8.5)

Vautard et al, 2019, PRINCIPLES

Sørland and Demory

Ongoing work enabled by COSMO-crCLIM at various resolutions

Diurnal cycle of summer precipitation over Switzerland

Understand when to switch off

- Understand orographic drag and improve parametrization ullet
 - Higher resolution => more resolved drag
 - Different behaviors between North/South and East/West • directions

Credit: C. Zeman

Ongoing work enabled by COSMO-crCLIM at $\Delta x=2km$

- Improve simulation of snow cover over orography depending on slope aspect and angle, using COSMO's 'radiationtopography' scheme
 - Default scheme: too many days covered by snow on South-facing slope; not enough on North-facing slope
 - Radiation-topography scheme: reduces biases everywhere

=> will be run over domain covering Alps and Pyrenees; $\Delta x=2km$

- Effect of climate change on clouds over Tropical Atlantic; Δx=2km (Hentgen et al, in press)
- Changes in heavy precipitation events with global warming over Europe; $\Delta x=2km$ (Ban et al, 2019)
- Changes in snow cover under global warming (Lüthi et al, 2019)

Summary

- A lot of effort has been put into the development of COSMO-crCLIM
 - Collaborative work between ETH, MeteoSwiss, C2SM, CSCS
 - Started from COSMO-POMPA (NWP)
 - Runs on both CPU and GPU => faster, cheaper
 - Adapted to run in climate mode
- Able to perform climate change simulations at continental scales at various resolutions
 - 50-12km resolutions (PRINCIPLES, CORDEX-CORE)
 - 2km resolution (crCLIM, FPS)
- A lot of potential for further research