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Motivation 

 Cumulus convection: major driver for atmospheric dynamics 

 NWP models (still) require convection parametrization schemes, but operate in 

convective grey zone 

      conceptual adaptions required  

 Hybrid Mass Flux Convection Scheme (HYMACS) abandons assumption of local 

subsidence  local mass sources / sinks 

 Merit of HYMACS in COSMO (Kuell and Bott, 2009, 2011; Uebel and Bott, 2015 

etc.), in WRF (Ong et al., 2017) 
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HYMACS ICON 



HYMACS core 
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 HYMACS introduces an additional convective mass flux term 𝐉𝐜 in the 

continuity equation 

 
𝜕ρ

𝜕t
= − 𝛁 ∙ ρ𝐯e + 

𝜕ρ

𝜕t
 
conv

= 0  with 
𝜕ρ

𝜕t
 
conv

= −𝛁 ∙ 𝐉𝐜 = −
1

A c

𝜕Mu

𝜕z
+

𝜕Md

𝜕z
 

 Physics-dynamics coupling is neither isobaric nor isochoric! 

 Cloud model also gives convective tendencies of enthalpy h, of specific moisture 

species qx and horizontal momentum 𝐯h 

 Convective Exner pressure tendency:  

Local change in density through grid scale (calculated in the dynamical core) and 

convective (to be parametrized) mass flux divergence 
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Mass Lifting Experiment 
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Approach 

Compare mass lifting experiments in ICON with 

experiments in COSMO (see Kuell et al., 2007)  

General Model Setup 

Dry, polytrope 
dT

dz
= −6 K/km  background atmosphere at rest  

69 equidistant vertical levels (∆z = 300 m) 

Rayleigh sponge layer @z ≥ 14 km 

Central grid column with mass sink (bottom layer) and mass source 

(@𝑧 = 8.85 km)  1 hour „convective cell“ 

Mass transfer only  no enthalpy tendency 

Specific COSMO Setup Specific ICON Setup 

Rectangular grid with  

∆xcos = 0.0625° ≅ 7 km 

Triangular grid with  
∆le = 10.5 km AICON ≅ Acos  



Mass Lifting Experiment 
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Results of COSMO simulation (v5.1., reference): 

 

Dynamical flow response and gravity wave emission 

Mass source 

Mass sink 



Mass Lifting Experiment 
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Results of an ad-hoc implementation in ICON: 
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Results of an ad-hoc implementation in ICON: 
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Results of an ad-hoc implementation in ICON: 

 Distorted dynamical response due to anisotropic 4th order divergence damping 
∂vn

∂t
+ adv vn = −cpdθv

∂π

∂n
+ Fs vn + Fd 𝐯   

 with   Fd 𝐯 = −fdA c
2∇n ∇ ∙ ∇n Dh +

∂w

∂z
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Results of an ad-hoc implementation in ICON: 

 Distorted dynamical response due to anisotropic 4th order divergence damping 
∂vn

∂t
+ adv vn = −cpdθv

∂π

∂n
+ Fs vn + Fd 𝐯   

 with   Fd 𝐯 = −fdA c
2∇n ∇ ∙ ∇n Dh +

𝛛𝐰

𝛛𝐳
         

Vertical divergence  

affects vn, but w is 

unaffected 

So, what is the task of the divergence damping 

 in ICON?  



The Checkerboard Problem 
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 Major obstacle during development of ICON: Divergence polluted with 

checkerboard noise  

 

 Inherent property of the triangular grid (Gassmann, 2011) : 

• Vector components in trivariate coordinate system are linearly dependent 

v n,1 + v n,2+ v n,3 = 0 

• Any violation of the constraint gives raise to checkerboard noise 

 Numerical filter (divergence damping, hyper-diffusion etc.) is indispensable !!! 
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Mitigating the Checkerboard Problem 
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Known approaches: 
 

• 4th order divergence damping acting on 3D divergence (operational,  

see Zaengl et al. (2015)) 
 

• Hyper-diffusion (i.e. as in Wan et al. (2013); different discretizations possible)  
 

 

 

New approach: 

 Combination of divergence damping techniques (CDD) 
 

• 4th order divergence damping acting on 2D divergence 
 

 Compatible with HYMACS                      Damping of gravity waves  

 Very efficient noise filter 
 

• Isotropic 2nd order divergence damping  
 

  Compatible with HYMACS                      Less efficient noise filter 

  No degeneration of gravity waves 
 

Strong grid imprinting 



Mass Lifting Experiment  
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Results with combined divergence damping in dynamical core: 

 
Dynamical flow response 

Conventional divergence damping Combined divergence damping 
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Results with combined divergence damping in dynamical core: 

 
Dynamical flow response 

Combined divergence damping COSMO (reference)  



Mass Lifting Experiment  
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Results with combined divergence damping in dynamical core: 

 
Gravity wave emission  

 
COSMO (reference) Combined divergence damping 



Mass Lifting Experiment  
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Results with combined divergence damping in dynamical core: 

 
Quantifying Checkerboard-Noise in energy spectra  

 interpolation of horizontal wind onto regular grid (∆x = 0.87∆le following Dipankar et al. 

(2015)) in ICON 

ICON N4DD 

ICON CDD  

COSMO 
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Results with combined divergence damping in dynamical core: 

 
Quantifying Checkerboard-Noise in energy spectra  

 interpolation of horizontal wind onto regular grid (∆x = 0.87∆le following Dipankar et al. 

(2015)) in ICON 

Noise! 

ICON N4DD 

ICON CDD 

COSMO 



Mass Lifting Experiment  
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Results with combined divergence damping in dynamical core: 

 
Quantifying Checkerboard-Noise in energy spectra  

 interpolation of horizontal wind onto regular grid (∆x = 0.87∆le following Dipankar et al. 

(2015)) in ICON 

ICON N4DD 

ICON CDD 

COSMO 

4th order divergence 

damping required 



Conclusion and Outlook 
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HYMACS in ICON is not trivial… 

 no conventional physics-dynamics coupling 

 inherent checkerboard problem in divergence of the triangular grid 

HYMACS forces divergent/convergent wind pattern at smallest model scale 

Conventional numerical filter inappropriate 

 

Implementation of a combined divergence damping 

 Compatible with HYMACS 

 Effective reduction of checkerboard noise 

 Comparable performance in Jabolonowski-Williamson test cases 

 

Further steps 

 Idealized tests with moisture (activated cloud model) 

 Real case tests in ICON-LAM 
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Motivation 
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 Virtues of introducing net mass transfer in simulating deep convection: 

• Theoretically: idealized experiments of convective systems (Shutts and Gray, 1994; 

Gray et al., 1998; Gray, 1999; Chagnon and Bannon, 2006; Kuell et al., 2007 etc.) 

• Practical applications: HYMACS in COSMO 

 Case study with COSMO (v5.01) during a persistent high-over-low weather 

situation over Central Europe in June 2016: 

• Seven 24h-simulations with different CPS: HYMACS (HYM) and Tiedtke (Tie)  

• Verification against RADOLAN observations  

 

COSMO domain: 200x200 grid 

points, ∆x = 0.0625°~7 km 

Rel. Topography, 500 hPa Geopotential, PMSL 



Motivation 
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(Bias-corrected) Fractional Skill Score-analysis: 

Spatial verification: 

+ Better simulation of precipitation patterns with HYMACS 



Motivation 
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Area-integrated precipitation rates: 

Diurnal cycle: 

+ Better representation of the diurnal cycle with HYMACS 



Motivation 
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Precipitation rates on 4th June 2016 20 UTC: 

Diurnal cycle: 

+ Better representation of the diurnal cycle with HYMACS 

RADOLAN HYMACS Tiedtke 



HYMACS - Theoretical Background 
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 Arbitrary volume consisting of environmental and convective part with partial 

densities ρe and ρc 

 Momentum of conv. part 𝐯 𝑐 as superposition of environmental 𝐯e and convective 𝐯c 

 Balance equation (no internal sources): 

Dρ

Dt
= 0 =

𝜕ρ

𝜕t
+ 𝛁 ∙ ρ𝐯e + ρc𝐯c  

               =  
𝜕ρ

𝜕t
+ 𝛁 ∙ ρ𝐯e + 𝛁 ∙ 𝐉c 

  Dominance of vertical convective motion: 𝛁 ∙ 𝐉𝐜 = −
1

A c

𝜕Mu

𝜕z
+

𝜕Md

𝜕z
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ρe 
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Ve 

V = Ve + Vc = Ve +  Vc,i
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ρ𝐯 = ρe𝐯𝐞 + ρc𝐯 𝐜 

Barycentric 

momentum: 



Physics-dynamics coupling  
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 Convective tendency of any scalar ψ considering mass transfer 
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 Update of density ρ and Exner pressure π through convective tendencies in the 

dynamical core  

 𝜋−tendency derived from 1st law of thermodynamics: 
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with α =
Rd

Rv

− 1 qv − ql − qf 

 Update of moisture species qx and momentum vn at physical time step 

(conventional approach) 



Similarity of diffusion and divergence damping 
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 Former diffusion operator based on identity of vector laplacian (Wan et al., 2013) 

∇2𝐯 = 𝛁 𝛁 ∙ 𝐯 −  𝛁 x 𝛁 x 𝐯  

⇒   ∇d
2  v

e
∙ 𝐍e = ∇n Dh − ∇tζ    sssssss  

 Properties of the fourth-order hyper laplacian ∇d
4𝐯

𝐞
∙ 𝐍e =  ∇d

2 ∇d
2 v   

Advantage Disadvantage 

 Effective noise removal  High diffusivity required for effective 

noise removal  

  Numerical errors near pentagon 

points ( distorted triangles)  

 First term of hyper laplacian operator corresponds to fourth order divergence 

damping term (involving Dh)  

Fourth order divergence damping may be tuned to remove  

checkerboard pattern without excessive diffusivity  



Isotropic 2nd order divergence damping 
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 implicit numerical solution process for prognostic vertical wind  

 standard algorithm for three-band matrix (Thomas algorithm) 

 Damping term applied in corrector step of two-timelevel integration scheme 

AD =  fd,2oAc β1
𝜕Dh

𝜕z
+

𝜕

𝜕z

𝜕w

𝜕z

n+1

+ β2
𝜕Dh

𝜕z
+

𝜕

𝜕z

𝜕w

𝜕z

n+1∗

  

with β1 = 1 − β2: Crank−Nicholsen parameter 

and n+1: new timelevel, n+1∗: intermediate timelevel 

 Less scale-selective than 4th order divergence damping 

 Averaging of 𝐷ℎ for pure 2nd order divergence damping  reduce noise, 

but not fully isotropic  



Jabolonowski-Williamson test cases 
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 Standard test for dyn. cores of global models (Jabolonowski and Williamson, 2006) 

 Steady state configuration: 

• Zonally symmetric, strong baroclinic atmosphere  

• No perturbation imposed, i.e. hydrostatic and geostrophic balance 

 Grid imprinting due to numerical discretization errors become visible  baroclinic 

wave development 

 L2 error of surface pressure > 0.5 hPa  initial state broken  



Baroclinic wave test case 
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 Baroclinic wave configuration: 

• Initialization with zonal wind pertubation 

 triggers (explosive) baroclinic wave train after 7 days 

  

 

 

 

ICON OP ICON CDD 



Baroclinic wave test case 
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 Baroclinic wave configuration: 

• Initialization with zonal wind perturbation 

 triggers (explosive) baroclinic wave train after 7 days 

ICON CDD ICON CDD – ICON OP 



Baroclinic wave test case 
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 Baroclinic wave configuration: 

• Initialization with zonal wind perturbation 

 triggers (explosive) baroclinic wave train after 7 days 

 Baroclinic wave train practically indistinguishable until simulation day 13  



Noise in the dissipation phase 
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 In principle, dynamical response ok after switching off mass transfer, but…  

 Slower dissipation at shortest wave spectrum λ~2∆𝑥  

 Quicker dissipation at λ~(3 − 5)∆𝑥 due to 2nd order divergence damping  

Further testing required with focus on real case studies  

ICON N4DD 

ICON CDD  

COSMO 

ICON N4DD 

ICON CDD  

COSMO 


