

PerduS: <u>Photovoltaikertragsreduktion durch</u> <u>Saharastaub</u>

(Reduction of Photovoltaic Power Generation due to Saharan Dust)

Vanessa Bachmann¹, Andrea Steiner¹, Jochen Förstner¹, Thomas Hanisch¹, Florian Filipitsch², Gholamali Hoshyaripour³, Frank Wagner³, Heike Vogel³, Bernhard Vogel³, Bodo Ritter¹, Axel Seifert¹, Detlev Majewski¹

> ¹⁾ Deutscher Wetterdienst (DWD), Offenbach, ²⁾ Deutscher Wetterdienst, Meteorologisches Observatorium Lindenberg, ³⁾ Karlsruhe Institute of Technology (KIT)

Photovoltaikertragsreduktion durch Saharastaub

1

Net Power Production, Germany 2018

Case example April 2018

Typical Nuclear Power Plant: 1 GW Power

- PV power was overestimated (cloud cover underestimated)
- Transmission system operators (TSOs) ensure grid stability

meteo control Energy & Weather Services

ICON-ART 20180408 +72h

2018040800, vv: 003, ICON-ART, AOD_DUST 1

Wetter und Klima aus einer Hand

Photovoltaikertragsreduktion durch Saharastaub

ICON and ART (Aerosols and <u>Reactive Trace Gases</u>)

Online-coupling of ICON and the **ART-Modules**

୲୕

Vetter und Klima aus einer Hand

Photovoltaikertragsreduktion durch Saharastaub

PerduS

ICON-ART in NUMEX

fördert durch:

0

meteo control

Photovoltaikertragsreduktion durch Saharastaub

New optical properties

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Shao et al. (2007)

Data bank of optical properties of non-spherical particles (Meng, 2010)

6

Deutscher Wetterdienst

Vetter und Klima aus einer Hand

© Project colleague Ali Hoshyaripour, KIT

Non-spherical dust particles increase the optical depth by up to 28% (Hoshyaripour et al., 2018 in review)

meteo control Energy & Weather Services

Photovoltaikertragsreduktion durch Saharastaub

ICON-ART in NUMEX

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Bundesministe für Wirtschaft und Energie

6

Deutscher Wetterdienst Wetter und Klima aus einer Hand meteo control

Photovoltaikertragsreduktion durch Saharastaub

Perdus

8

EnVar

DWD

6

Deutscher Wetterdienst Wetter und Klima aus einer Hand meteo control

Energy & Weather Services

3DVar/EnVar:

$$\mathbf{x}_a = \mathbf{x}_b + \mathbf{W}(\mathbf{y}_0 - H(\mathbf{x}_b))$$

$$\mathbf{W} = \mathbf{B} \mathbf{H}^T (\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}$$

<u>3DVar</u> ← → EnVar ensemble background error covariance matrix in a variational context:

Photovoltaikertragsreduktion durch Saharastaub

PerduS

9

DWD

3DVar/EnVar: $\mathbf{x}_a = \mathbf{x}_b + \mathbf{W}(\mathbf{y}_0 - H(\mathbf{x}_b))$ first guess $\mathbf{W} = \mathbf{B} \mathbf{H}^T (\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}$

<u>3DVar</u> ← → EnVar ensemble background error covariance matrix in a variational context:

$$\mathbf{B}_{hybrid} = \alpha \mathbf{B}_{EnKF} + \beta \mathbf{B}_{3DVar}$$
$$\alpha = 0.7$$
$$\beta = 0.3$$

Photovoltaikertragsreduktion durch Saharastaub

10

meteo control

ICON-ART in "EnVar" Mode

Deutscher Wetterdienst Wetter und Klima aus einer Hand

First Guess forecasts (x_b) in the assimilation cycle are ICON-ART forecasts with prognostic mineral dust, including aerosol-radiation feedback mechanisms.

Deutscher Wetterdienst Wetter und Klima aus einer Hand

୲୕

Deutscher Wetterdienst Wetter und Klima aus einer Hand meteo control

Energy & Weather Services

 Daily 00 and 12 UTC forecasts up to +180 h (global), +120 h (nest)

→ Resolution: 40 km (global) 20 km (nest)

- Experiments with (10517) and without (10530) prognostic mineral dust
- How does the prognostic mineral dust distribution differ from the operationally used Tegen aerosol climatology^{*})

*) Tegen et al. (1997)

Bundesministerium für Wirtschaft und Energie

 \rightarrow Dust Optical Depth τ at 550 nm for 09/04/2018:

Tegen Climatology

ICON-ART

 $I(\lambda) = I_0 e^{-\tau(\lambda)}$ for $\lambda = 550$ nm

Deutscher Wetterdienst Wetter und Klima aus einer Hand

meteo control Energy & Weather Services

Photovoltaikertragsreduktion durch Saharastaub

Aerosol-Radiation Feedback

 \rightarrow Dust Optical Depth τ at 550 nm for 04/2018:

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Monthly mean AOD Dust in 2018

meteo control

Energy & Weather Services

→ Daily 00 and 12 UTC forecasts up to +180h (Nest: +120h)

→ Experiments with (10517) and without (10530) prognostic mineral dust

➔ How does the prognostic mineral dust distribution differ from the operationally used Tegen aerosol climatology^{*})

→ How good are our dust forecasts?

*) Tegen et al. (1997)

Bundesministerium für Wirtschaft und Energie

Deutscher Wetterdienst

Vetter und Klima aus einer Hand

6

Comparison Model vs. AERONET / MODIS Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

6

2018040800 vv: 12, ICON-ART-EUNA2_10517 , vertically integrated

Examples of Observational Data

୲୕

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Deutscher Wetterdienst Wetter und Klima aus einer Hand

óp

ou

radiat

solar

diffuse

Energy & Weather Services

Photovoltaikertragsreduktion durch Saharastaub

18

Perdus

Comparison of the Radiation Forecast

Comparison of the irradiance at the surface – verification against SYNOP observations

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ufgrund eines Beschlusses

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD () Karlsruher Institut für Tech

? ICON-ART configuration in dust case ?

Deutscher Wetterdienst Wetter und Klima aus einer Hand

On demand: additional nest in forecasts

- + Higher resolution in emission area \rightarrow More realistic dust emission (long term study)
- + Influencing the DA cycle (2-way-nesting)
- + no interpolation necessary

meteo control

? ICON-ART configuration in dust case ?

On demand: additional nest in forecasts

- + Higher resolution in emission area \rightarrow More realistic dust emission (long term study)
- Influencing the DA cycle (2-way-nesting)
- + no interpolation necessary

➔ Question: Trigger similar to dust warning mails?

meteo control

21

DWF

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Thank you!

Literatur

→ Rieger, D., Steiner, A., Bachmann, V., Gasch, P., Förstner, J., Deetz, K., Vogel, B., and Vogel, H.: Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany, *Atmospheric Chemistry and Physics*, 17, 13391 – 13415, doi:10.5194/acp-17-13391-2017, 2017

→ Rieger, D., Bangert, M., BischoffGauss, I., Förstner, J., Lundgren, K., Reinert, D., Schröter, J., Vogel, H., Zängl, G., Ruhnke, R., and Vogel, B.: ICON–ART 1.0 – a new online-coupled model system from the global to regional scale, Geosci. Model Dev., 8, 1659–1676, doi:10.5194/gmd-8-1659-2015, 2015.

→ Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc., 141, 563–579, doi:10.1002/qj.2378, 2015.

→ Hoshyaripour, G. A., Bachmann, V., Förstner, J., Steiner, A., Vogel, H., Wagner, F., Walter, C. and Vogel, B.: Accounting for Particle Non-Sphericity in a Dust Forecast System: Impacts on Model-Observation Comparison, in review, 2018.

6

meteo control

