

Impact of aerosol deposition on snow albedo: improvement of snow optical properties with respect to grain size

Anika Rohde, Bernhard Vogel

Institute of Meteorology and Climate Research - Aerosols, Trace Gases and Climate Processes

Albedo: Reflectivity of a Surface

ESM

Surface Energy Balance

Temperature

Snow Melt

Atmosphere

Hydrology

Soil

Model Sensitivity: Pirazzini et al., 2002

Albedo has a significant impact on

⇒ surface temperature

⇒ 2m air temperature

Model Sensitivity: Pirazzini et al., 2002

Albedo has a significant impact on

⇒ surface temperature

⇒ 2m air temperature

Aerosols:

solid/fluid particles suspended in the atmosphere (e.g. mineral dust, volcanic ash, black carbon, ...)

Colorado Rockies snowpack in 2009. Credit: S. McKenzie Skiles, Snow Optics Laboratory, NASA/JPL

NASA

ESM

ESM

ESM

Combined effect of

⇒ Light Absorbing Impurities

⇒ Snow Metamorphism

Senator Beck Basin, San Juan Mountains, Colorado Skiles et al., 2017

Aerosols in

including optical properties of aerosols

Snow Model in ICON

Soil Vegetation Atmosphere Transfer (SVAT) scheme TERRA:

- 1-layer snow model (operational)
- multi-layer snow model

Snow Albedo:

- limited to fixed values
- no distinction between VIS and NIR
- aging of albedo as function of time

⇒ No optical-equivalent snow grain size

Optical Snow Grain Radius

modified equation from MOSES 2.2 (Essery et al., 2001)

$$r(t + \Delta t) = \left[r(t)^{2} + \frac{G_{r}}{\pi} \Delta t \right]^{1/2} \qquad \Rightarrow \text{ growth factor}$$
$$-[r(t) - r_{0}] \frac{S_{f} \Delta t}{d_{0}} \qquad \Rightarrow \text{ snow fall}$$
$$+[r_{max} - r(t)] \frac{Z_{rain} \Delta t}{Z_{rain,max}} \qquad \Rightarrow \text{ rain fall}$$

$$G_r \begin{cases} 1 \ \mu m^2 s^{-1} & T_* = T_m & (melting \ snow) \\ 0.1 \ \mu m^2 s^{-1} & T_* < T_m, r < 150 \ \mu m & (cold \ fresh \ snow) \\ Aexp(^{-E}/_{RT_*}) & T_* < T_m, r > 150 \ \mu m & (cold \ aged \ snow) \end{cases}$$

Optical Snow Grain Radius

Snow Albedo: Clean Snow

based on Wiscombe & Warren, 1980

➢ Mie Calculations:

Extinction & Scatter properties ($\sigma_{ext}, \sigma_{sca}, g$)

$$a_{d}^{\infty} = \frac{2 \tilde{\omega}^{*}}{1+P} \left\{ \frac{1+b^{*}}{\xi^{2}} \left[\xi - \ln(1+\xi) \right] - \frac{b^{*}}{2} \right\}$$

$$a^{*} = 1 - \tilde{\omega}^{*} g^{*} \qquad \xi = \left[3 a^{*} (1-\tilde{\omega}^{*}) \right]^{1/2}$$

$$b^{*} = \frac{g^{*}}{a^{*}} \qquad P = \frac{2 \xi}{3a^{*}}$$

ESM

Snow Albedo: Clean Snow

Snow Albedo: Clean Snow

Snow Albedo: Impact of Aerosols

Literature

Essery, R., Best, M., & Cox, P. (2001). MOSES 2.2 technical documentation.

- Pirazzini, R., Vihma, T., Launiainen, J., & Tisler, P. (2002). Validation of HIRLAM boundary-layer structures over the Baltic Sea. *Boreal Environment Research*, 7(3), 211-218.
- Schaaf, C. and Wang Z., (2015). MCD43C3 MODIS/Terra+Aqua BRDF/Albedo Albedo Daily L3 Global 0.05 Deg CMG V006. NASA EOSDIS Land Processes DAAC: http://doi.org/10.5067/MODIS/MCD43C3.006
- Skiles, S. M., & Painter, T. (2017). Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado. *Journal of Glaciology, 63*(237), 118-132. doi:10.1017/jog.2016.125
- Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M., & Painter, T. H. (2018). Radiative forcing by light-absorbing particles in snow. *Nature Climate Change*, 8(11), 964-971. doi:10.1038/s41558-018-0296-5
- Warren, S. G., & Wiscombe, W. J. (1980). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. *Journal of the Atmospheric Sciences*, *37*(12), 2734-2745.
- Wiscombe, W. J., & Warren, S. G. (1980). A model for the spectral albedo of snow. I: Pure snow. *Journal of the Atmospheric Sciences*, *37*(12), 2712-2733.