

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz

Challenges for a new ensemble prediction system

for 5 day-forecasts at MeteoSwiss Guy de Morsier on behalf of the ModInterim team: Marco Arpagaus, Jean-Marie Bettems, Oliver Fuhrer, Daniel Leuenberger, Claire Merker, Philippe Steiner and André Walser ModInterim: EPS at MeteoSwiss @ ICCARUS 19.3.2019 Guy de Morsier

÷

æ

What's new in ModInterim?

- Only ensembles for COSMO and IFS
- Data Assimilation (KENDA) only at 1.1km

1/2

What's new in ModInterim?

2/2

- Analysis without nudging
 - > KENDA @ 1.1km with 40 members
 - **Upscaling** to 2.2km for COSMO-2E
- Short range: COSMO-1E
 - > 8x per day (00, 03, 06, 09, 12, 15, 18, 21 UTC)
 - Lead time to +33h (03 UTC to +45h)
 - > Aim: products between 1:15h and 2:30h/2:45h after initialization
- Early medium range: COSMO-2E
 - 4x per day to +120h=+5d
 - > Aim: products between 2:10h and 3h after initialization
 - > Use ICON-EU for certain products and switch off COSMO-7
- Late medium range: IFS-ENS @ ~9km for some members
 - > 2x per day to +15d

What is "seamless" ?

- In the concept phase, we planed to have a seamless solution between 1.1 and 2.2 km resolution models.
- Requirements for seamless ModInterim products:
 - No spin-up after upscaling (ok)
 - Same bias in 1.1 and 2.2 km members (?)
 → seamless across resolution
 - Bias remains the same after upscaling (?)
 → seamless across lead-time

Seamless across resolution...

- Test with:

 Members @1km +0h to +33h (9UTC)
 Members @2km +33h to +120h
 (upscaled)
 Members @2km +0h to +120h
- not fulfilled at several stations in complex topography
- 2 clusters clearly visible until 1.1 km²⁶ members are upscaled to 2.2 km

Seamless across lead-times...

Grid points with large temperature difference of up to 12 K between 1.1 and 2.2 km run 1h after upscaling (10 UTC)

 Move seamless option to another project

Seamless as part of «PostprocVeri» project

 Postprocessing of 2D, probabilistic, seamless forecasts for basic variables (temperature, dew point, precipitation, clouds, wind)

ModInterim EPS at MeteoSwiss © ICCARUS 19.3.2

• Replacement of legacy postprocessing (Kalman-Filter)

O

53

- Implementation into existing production chain (data4web)
- Introduction of systematic verification of the whole production chain
- Recommendation of new headline scores
 From M. Liniger, Chr, Spirig

Guv de Morsier

1.1 km vs. 2.2 km Ensemble

Case study 1.8.2017

Reference 2.2km with SPPT

Snapshot at 16UTC (+16h)

Radar

dBZ

÷

1.1 km vs. 2.2 km Ensemble

Case study 1.8.2017

Experiment 1.1km without SPPT

Radar

Snapshot at 16UTC (+16h)

÷

÷

dBZ

Upscaling Experiment

• Reference: 1.1km Forecast

D

- Experiment: Forecast started from an upscaled 1.1km forecast (here at 15UTC)
- Works well for many variables, but problems with T2m as shown on slide 7

Number of Ensemble Members

- Verification experiment with operational COSMO-E
- Using first 7, 11, 15 and 21 members

Probabilities from small ensembles

 Since the COSMO-1E ensemble has 11 members only, probability forecasts can potentially be **improved** by **statistical methods** (below) or by using the time lagged forecasts (LAF) members.

- Approach:
 - consider an ensemble as merely a source of information rather than possible scenarios of reality
 - derive a kernel density estimation (KDE) from the individual ensemble members
- Benefit for Gaussian parameters like temperature (e.g. Broeckner et al., 2008)
- However, KDE for non-Gaussian parameters like precipitation not straightforward

Data Assimilation

- Change from Nudging at 1.1 km to KENDA
 - Nudging draws model closer to observations, but quality of +12 h forecasts similar
 - Additive Covariance Inflation (ACI, operational since 16.10.2018)
 - First Guess Check (operational since 20.12.2018)
 - Retuning of Observation errors (on going) and Mode-S aircraft data (soon)
- New observations:
 - Temperature and humidity (T2m and RH2m) and from :
 - Raman lidar (profiles)
 - Microwave radiometer (Brightness Temperature)
 - MeteoDrones (profiles)

COSMO-E CTRL and Nudging Forecast verification against Radiosondes

Winter 2018/2019 Relative Humidity

ModInterim: EPS at MeteoSwiss © ICCARUS 19.3.2019

Lifecycle High Performance Computer CSCS

- Upgrade dimensioned to solution:
 - Cray CS Storm with 3 racks
 - 18 compute nodes with each
 2 INTEL Skylakes CPU and
 8 NVIDIA V100 GPU (32GB)
 - Latest Tesla Generation
 - 14 PP and 6 login nodes with 2 INTEL Skylakes CPU
- **Redundant** system:

O

- Only 50% redundancy for compute nodes
- New Failover-Procedure

New Computer has arrived @ CSCS

Next steps

•

- Q2 2019 Finish HPC system installation at CSCS
 - Q3 2019 Pre-operational phase
 - Q3 2020 Operational
- Q4 2020
- Removal of old system

Conclusions

- All lead times are probabilistic !
- No COSMO-7
- No Nudging but KENDA (1Km scale ENsemble Data Assimilation) (no alternative to produce an ensemble)
- Ensemble analysis @ 1km every hour
- A lot of work to migrate: new system, production, products and clients, etc.

Thank you for your attention and **questions**?