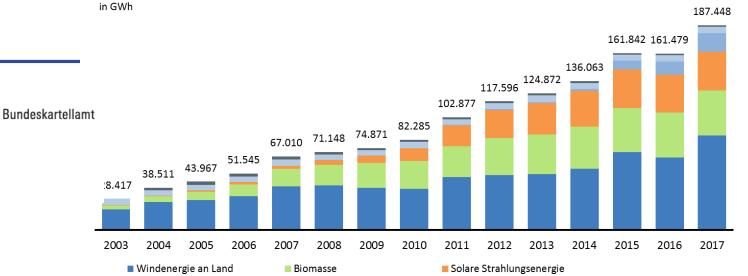
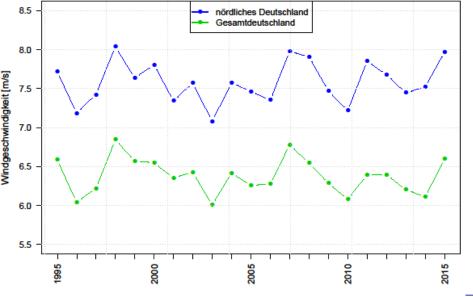
Development and applications of regional reanalyses for Europe and Germany based on DWD's NWP models: Status and outlook


Frank Kaspar¹, Michael Borsche¹, Andrea Kaiser-Weiss¹, Jan Keller^{1,2,3}, Maarit Lockhoff³, Deborah Niermann¹, Roland Potthast¹, Thomas Rösch¹, Sabrina Wahl^{2,3}

- 1) Deutscher Wetterdienst, Offenbach, Germany
- 2) Hans Ertel-Centre for Weather Research, Bonn, Germany
- 3) University of Bonn, Bonn, Germany

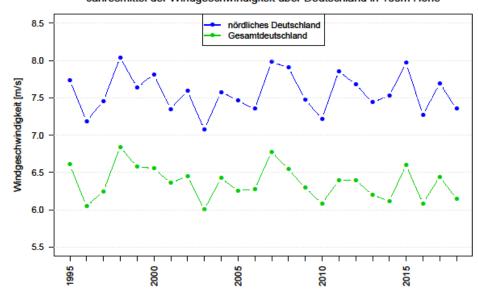
Entwicklung der eingespeisten Jahresarbeit aus Anlagen mit einem Zahlungsanspruch nach dem EEG


Wasserkraft

Jahresmittel der Windgeschwindigkeit über Deutschland in 100m Höhe (ERA-Interim)

Windenergie auf See

Bundesnetzagentur


Jahresmittel der Windgeschwindigkeit in 100m Höhe über Deutschland, sowie dem nördlichen Bereich Deutschlands. Die Daten basieren auf der globalen atmosphärischen Reanalyse "ERA-Interim" und stellen den Mittelwert über folgende Bereiche dar: Deutschland: ca. 6°O – 15°O, ca. 48°N – 55°N; nördliches Deutschland: ca. 6°O – 15°O, ca. 52°N – 55°N

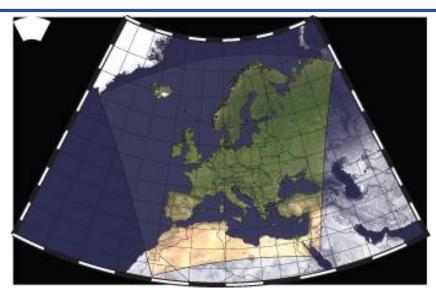
(Quelle: Deutscher Wetterdienst, Nationale Klimaüberwachung, basierend auf ERA-Interim: Dee et al. (2011)).

Jahresmittel der Windgeschwindigkeit über Deutschland in 100m Höhe

Quelle: Bundesnetzagentur

■ Deponie-, Klär- & Grubengas

Jahresmittel der Windgeschwindigkeit in 100m Höhe über Deutschland, sowie dem nördlichen Bereich Deutschlands. Die Daten basieren auf der globalen atmosphärischen Reanalyse "ERA-Interim" des europäischen Copernicus Klimadienstes (C3S) und stellen den Mittelwert über folgende Bereiche dar: Deutschland: ca. 8°O – 15°O, ca. 52°N – 55°N; nördliches Deutschland: ca. 6°O – 15°O, ca. 52°N – 55°N (Quelle: Deutscher Wetterdienst, Nationale Klimaüberwachung, basierend auf C3S/ERA-Interim: Dee et al. (2011)).


Outline

- 1. Introduction to COSMO-REA6
- 2. Evaluation examples
- 3. Selected applications
- 4. Outlook
- 5. Summary

The regional reanalysis system based on the COSMO-NWP-model of the German Meteorological Service (DWD) (developed at the Hans-Ertel-Center for Weather Research (HErZ) at University of Bonn)

ERA-Interim Reanalysis (T255)

COSMO-REA6 (6.2 km)

- COSMO-EU v4.25
- CORDEX EUR-11 Domain
- Period 1995-2017(2018)

Data available at:

https://opendata.dwd.de/climate_environment/REA/

More details:

http://reanalysis.meteo.uni-bonn.de/

Soil moisture analysis (SMA)

Continuous nudging

SYNOP, SHIP, PILOT, TEMP, AIREP, AMDAR, ACARS,...

SST analysis (daily)
Snow analysis (6-hourly)

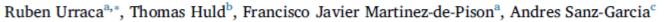
Open data access to selected parameters

Index von ftp://opendata.dwd.de/climate_environment/REA/COSMO_REA6/hourly/2D/

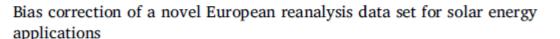
🖺 In den übergeordneten Ordner wechseln

Name	Größe	Zuletzt verändert	
ALWU_S		24.01.2019	14:35:00
ASOB_S		24.01.2019	14:01:00
ASWDIFD_S		31.01.2019	12:59:00
ASWDIR_S		31.01.2019	12:58:00
ATHB_S		31.01.2019	13:11:00
ATHD_S		24.01.2019	14:58:00
CLCT		24.01.2019	14:38:00
■ DURSUN		24.01.2019	13:58:00
H_PBL		24.01.2019	14:52:00
LWU_S		24.01.2019	15:51:00
■ PMSL		18.01.2019	11:59:00
■ PS		31.01.2019	13:04:00
■ QV_2M		24.01.2019	16:41:00
■ QV_S		24.01.2019	16:41:00
RAIN_CON		24.01.2019	15:05:00
RAIN_GSP		24.01.2019	15:15:00
RELHUM_2M		24.01.2019	16:58:00
RUNOFF_G		24.01.2019	15:44:00
RUNOFF_S		24.01.2019	15:49:00
SNOW_CON		24.01.2019	15:50:00
SNOW_GSP		24.01.2019	15:57:00
SOBS_RAD		24.01.2019	16:51:00
SWDIFDS_RAD		31.01.2019	13:10:00
SWDIRS_RAD		24.01.2019	16:49:00
TUDE DAD		20.01.2010	00.54.00

Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data


Ruben Urraca^a, Thomas Huld^{b,*}, Ana Gracia-Amillo^b, Francisco Javier Martinez-de-Pison^a. Frank Kaspar^c, Andres Sanz-Garcia^d

- ^a EDMANS Group, Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain
- European Commission, Joint Research Centre, Via Fermi 2749, I-21027 Ispra, Italy
- ^c Deutscher Wetterdienst, National Climate Monitoring, Frankfurter Str. 135, 63067 Offenbach, Germany
- ^d University of Helsinki, Viikinkaari, 5 E, P.O. Box 56, 00014 Helsinki, Finland



European Commission, Joint Research Centre, Via Fermi 2749, I-21027 Ispra, Italy

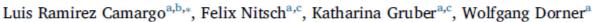
Christopher W. Franka,b,*, Sabrina Susanne Crewellb

- * Hans-Ertel-Centre for Weather Research, Climate Monit
- b Institute of Geophysics and Meteorology, University of (
- ^c Meteorological Institute, University Bonn, Germany ^d Dastscher Westerdienst, Offenbach, Germany

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy



Energy/ radiation

Electricity self-sufficiency of single-family houses in Germany and the Czech Republic

^c University of Helsinki, Viikinkaari, 5 E, P.O. Box 56, 00014 Helsinki, Finland

ARTICLE IN PRESS

Renewable Energy xxx (2018) 1-11

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier.com/locate/renene

Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems

Luis Ramirez Camargo a, b, *, Katharina Gruber a, c, Felix Nitsch a, c

- ¹ Institute for Applied Informatics, Technologie Campus Freyung, Technische Hochschule Deggendorf, Freyung, Germany
- b Institute of Spatial Planning, Environmental Planning and Land Rearrangement, University of Natural Resources and Life Sciences, Vienna, Austria
- Elnstitute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Vienna, Austria

Energy

journal homepage: www.elsevier.com/locate/energy

The benefit of long-term high resolution wind data for electricity

Contents

system analysis

Philipp Henckes a,*, Andreas Knaut b, Frank Obermüller b, Ch

- * Institute for Geophysics and Meteorology, University of Cologne, Cologne, 50969, Germany
- b Institute of Energy Economics, University of Cologne, Cologne, 50827, Germany

Energy/wind

6 Hans-Ertel-Centre for Weather Research, Climate Monitoring and Diagnostics, Germany

Article

Optimal Siting of Wind Farms in Wind Energy Dominated Power Systems

Raik Becker 1,* o and Daniela Thrän 2

- Department of Bioenergy, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Bioenergy Systems Department, DBFZ Deutsches Biomasseforschungszentrum gGmbH, Torgauer Straße 116, 04347 Leipzig, Germany; daniela.thraen@dbfz.de
- Correspondence: raik.becker@ufz.de; Tel.: +49-341-2434-593

Examples from hydrology

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-24 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 23 March 2018

© Author(s) 2018. CC BY 4.0 License.

Improving soil moisture and runoff simulations over Europe using a high-resolution data-assimilation modeling framework

Bibi S. Naz^{1,2}, Wolfgang Kurtz^{1,2}, Carsten Montzka¹, Wendy Sharples^{2,3}, Klaus Goergen^{1,2}, Jessica Keune⁴, Huilin Gao⁵, Anne Springer⁶, Harrie-Jan Hendricks Franssen^{1,2}, Stefan Kollet^{1,2}

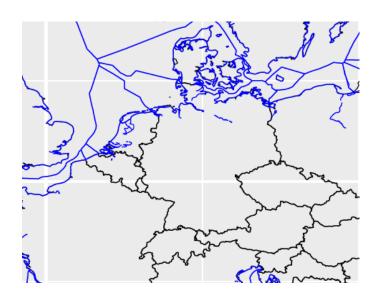
- ¹Research Centre Jülich, Institute of Bio- and Geosciences: Agrospl
 ²Centre for High-Performance Scientific Computing in Terrestrial S
 ³ Research Centre Jülich, Jülich Supercomputing Centre, Jülich 524
 ⁴Laboratory of Hydrology and Water Management, Ghent Universit
 ⁵Zachry Department of Civil Engineering, Texas A&M University,
- ⁶Institute of Geodesy and Geoinformation, Bonn University, Nussal

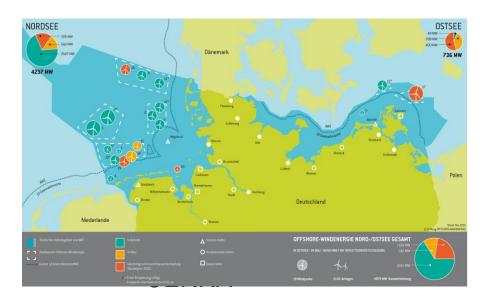
Correspondence to: Bibi S. Naz (b.naz@fz-juelich.de)

Article

Evaluation of the Water Cycle in the European COSMO-REA6 Reanalysis Using GRACE

Anne Springer 1,*, Annette Eicker 1,2, Anika Bettge 1, Jürgen Kusche 1 and Andreas Hense 3


- Institute of Geodesy and Geoinformation, Bonn University, 53115 Bonn, Germany; annette.eicker@hcu-hamburg.de (A.E.); s7anbett@uni-bonn.de (A.B.); kusche@geod.uni-bonn.de (J.K.)
- Hafen-City University, 20457 Hamburg, Germany
- Meteorological Institute, Bonn University, 52121 Bonn, Germany; ahense@uni-bonn.de
- Correspondence: springer@geod.uni-bonn.de; Tel.: +49-228-73-6149



Academic Editor: Frédéric Frappart

Received: 24 February 2017; Accepted: 14 April 2017; Published: 20 April 2017

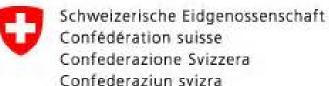
Offshore wind farms in Germany's "Exclusive economic zone"

- Suggested increase in capacity to 15 GW until 2030.
- Federal agencies should provide the data needed by investors for their bids.
- Close discussion with user community (with a detailed opinion on requirements)

UERRA partners

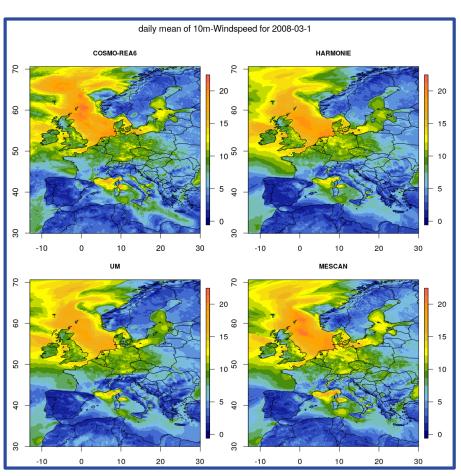
Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

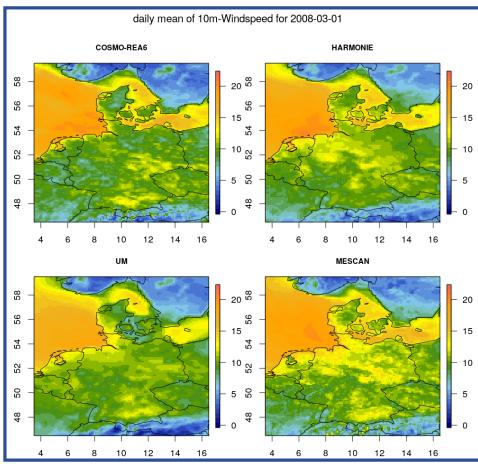
Universitat Rovira i Virgili

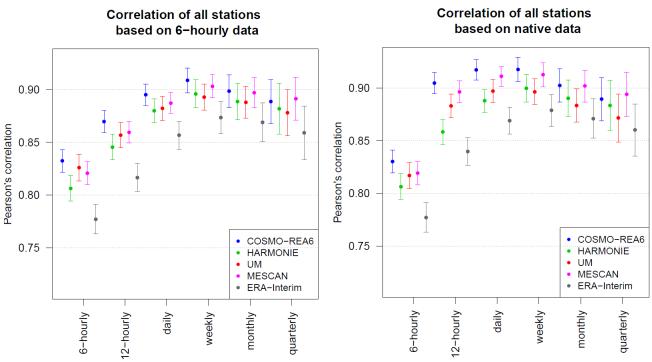


Friedrich-Wilhelms-Universität Bonn

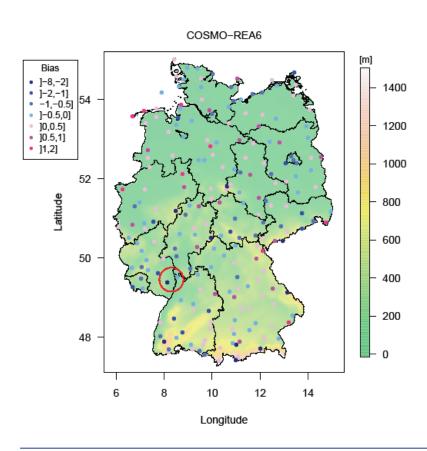
Meteorologisk institutt

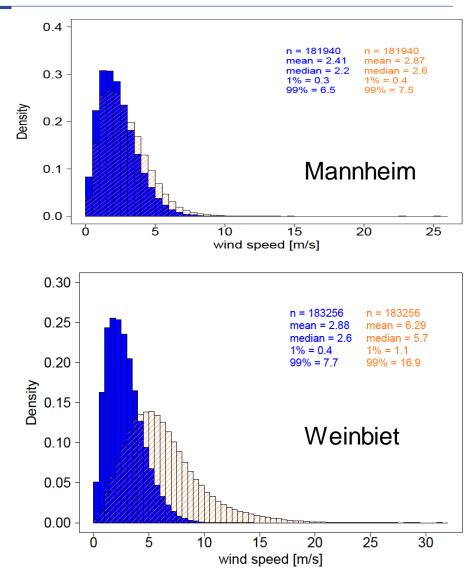


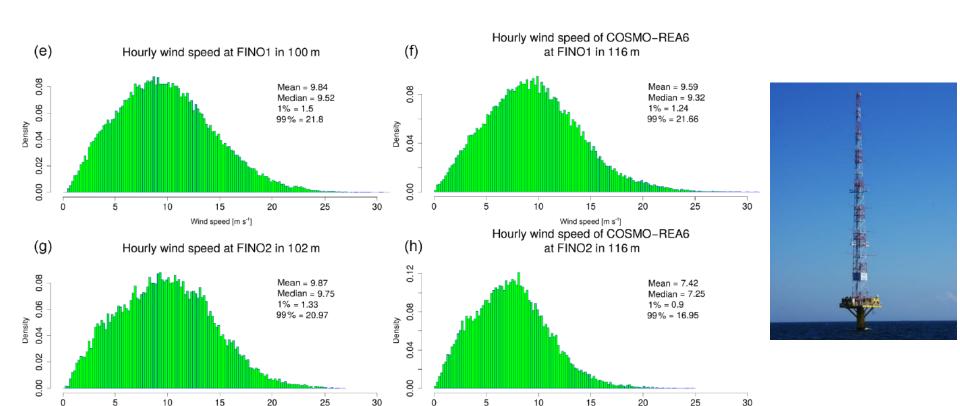



Comparison of European regional reanalyses on continental / national scale

Correlation depending on temporal resolution for 10m wind German stations

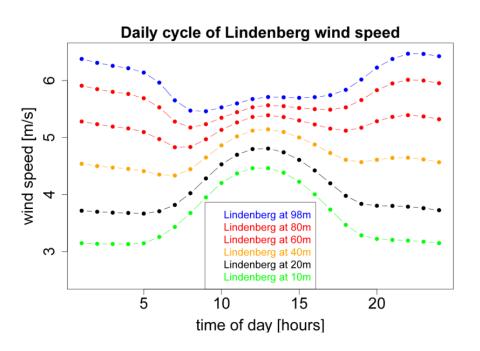


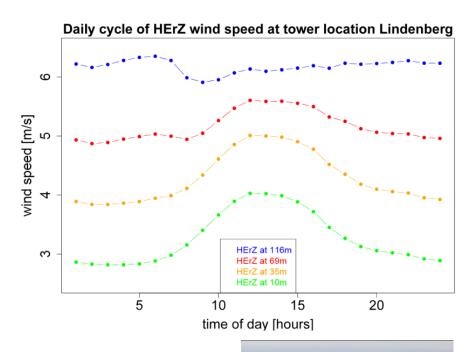

- → Clear added value of regional reanalyses on hourly and daily scale
- Maximum peak at weekly timescale
- → The use of hourly instead of six hourly reanalysis and observation data can improve the results significantly


Bias of 10m wind speed depends on orographic representation

Comparison against mast measurements over the ocean

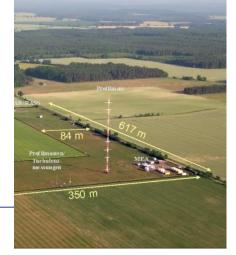
Wind speed [m s-1]


Borsche et al., 2016



Wind speed [m s-1]

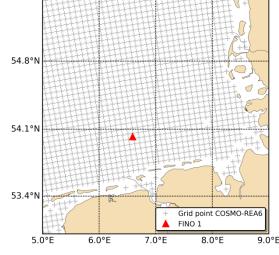
Daily cycle of wind speed

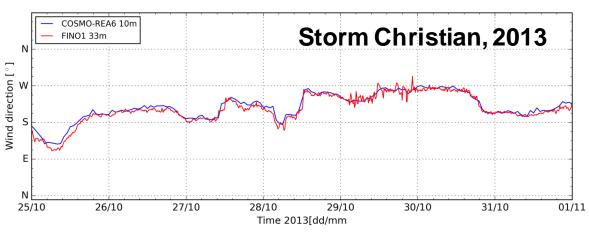


- → Good agreement at 10m height
- → Problems above 50m

Borsche et al., 2016

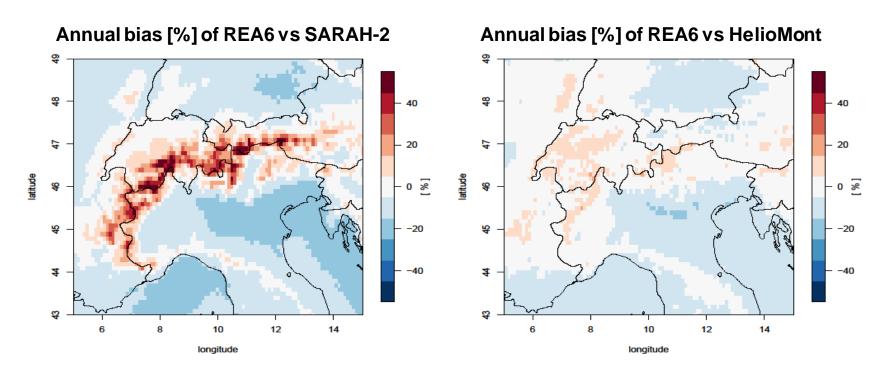
→ Extreme North Sea storm surges and their impacts: Identification of extreme storm surge events that are extremely unlikely, but physically plausible, and might result in extreme impacts/damages.



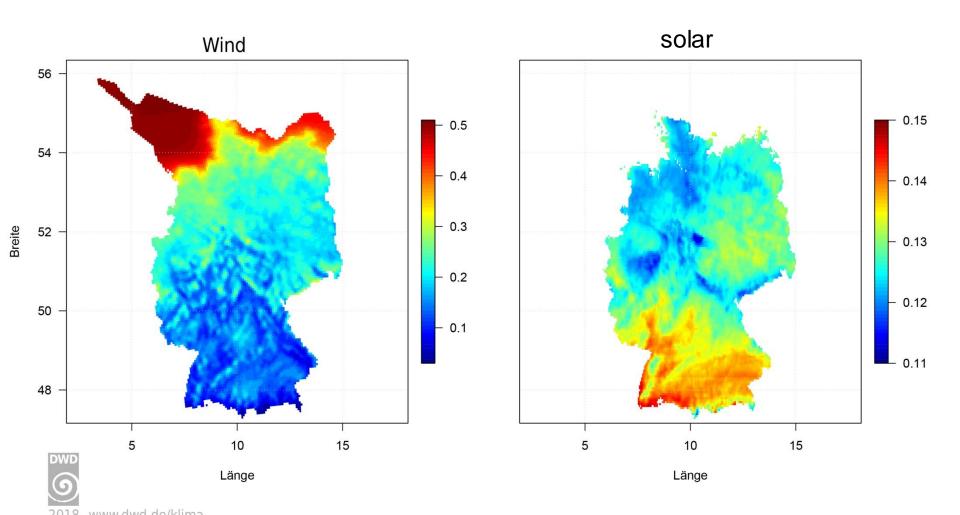


COSMO-REA6 2D – wind speed & direction at FINO 1

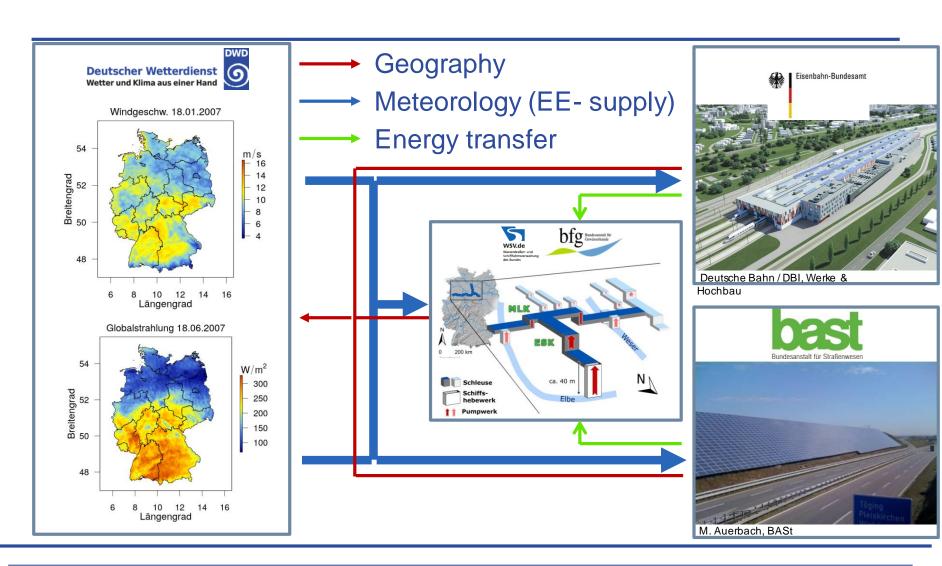
during storm "Christian" (2013)



Surface radiation, REA6, comparison with satellite data



- Strong bias over the Alps in first comparison with CMSAF data
- → Second reference (HelioMont) with improved algorithms for the Alpine region lead to smaller bias



Mean Capacity factor for wind energy and solar energy over Germany

Topic 5: Enhanced development of renewable energy in transport and infrastructure

Outlook

- → COSMO-REA6 needs to be upgraded:
 - →Use of latest operational COSMO model version with nudging (v5.04d4)
 - → Lateral boundary conditions of ERA-5
 - → Extension into the past until 1990
 - → Usage of bias corrected radiosonde data
- → Mid-term future is to develop an ICON-EU and/or ICON-LAM reanalysis

Conclusions

- → COSMO-REA6 provides climatological data for 1995 to 2017 over Europe with an hourly temporal resolution on ~6km horizontal spacing
- → COSMO-REA6 has been evaluated against independent data and other regional reanalyses
- → COSMO-REA6 is freely available and successfully used in several applications

https://www.dwd.de/reanalyse

