

Representing the Optical Properties of Internally-Mixed Aerosols in Atmospheric models using Artificial Neural Networks

Ali Hoshyaripour^{1*}, Lukas Muser, Lisa Muth, Heike Vogel and Bernhard Vogel

¹Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Germany *ali.hoshyaripour@kit.edu

www.kit.edu

Aerosol effects

Aerosol optical properties in models

- Extinction Coefficient (Q_{ext}): fractional depletion of radiance per unit path length (m⁻¹) due to scattering and absorption by aerosols
- **Single Scattering Albedo (\omega_o)**: ratio of scattering to extinction efficiency
- Asymmetry Parameter (g): Preferred scattering direction (forward or backward) for the light encountering the aerosol particles

The values of Q_{ext} , ω , and g depend on Wavelength (λ), Particle size distribution (PSD) Mixing state (externally mixed, core-shell, well-mixed ...) Composition (refractive index)

Aerosol Optical Properties: Offline calculations

n-D look-up tables ... revision is necessary by changing basic assumptions.

Effect of Aerosol Dynamics (AeroDyn)

So far: Externally mixed aerosols \rightarrow fixed RI \rightarrow lookup tables

New: Internally mixed aerosols \rightarrow RI and D varies with composition \rightarrow ??

Aerosol Optical Properties: Online calculations

Mie codes can be computationally expensive, so an approximate version (*Ghan et al.* JGR, 2001) is also available.

Mie code is called infrequent for 3-5 WL only. For other WLs, inter- and extrapolation is necessary.

Computationally super expensive, with low precision for inter- and extrapolated WLs ...

Key challenge:

High degrees of freedom in all above parameters Finding one global model/fit

Constraining aerosol mixing state: volcanic aerosols

Input variables for Mie calculations

Variables

- X1 = D_c/D_t: 0.6 to 1
- X2 = D_t: 0.5*D to 1.5*D
- X3 = H2SO4/H2O: 1E-3 to 1
- X4 = λ: 0.2 to 100 μm

(Shell thickness 0-0.4*D_t)

- (Median diameter)
- (Sulfate concentration)
- (WL for RRTM)

Mie calculations

To calculate the extinction and scattering factors and the asymmetry parameter:

$$Q^{\text{ext}} = \frac{2}{x^2} \sum_{n=1}^{\infty} (2n+1) \operatorname{Re}(a_n + b_n)$$

$$Q^{\text{sca}} = \frac{2}{x^2} \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2)$$

$$g = \frac{4}{x^2 Q^{\text{sca}}} \sum_{n=1}^{\infty} (2n+1) \left[\frac{n(n+2)}{n+1} \operatorname{Re}(a_n a_{n+1}^* + b_n b_{n+1}^*) + \frac{2n+1}{n(n+1)} \operatorname{Re}(a_n b_n^*) \right]$$

$$x = \frac{2 \pi r}{\lambda} \begin{cases} a_n = \frac{\psi'_n(y) \psi_n(x) - m \psi_n(y) \psi'_n(x)}{\psi'_n(y) \xi_n(x) - m \psi_n(y) \xi'_n(x)} \\ b_n = \frac{m \psi'_n(y) \psi_n(x) - \psi_n(y) \psi'_n(x)}{m \psi'_n(y) \xi_n(x) - \psi_n(y) \xi'_n(x)} \end{cases}$$

The extinction, scattering and absorption factors based on complex refractive indices (m), y=mx; extension for core-shell

Once we have the Qext, the mass-extinction coefficient for every mode is:

$$k_e(l,\lambda,B_\lambda) = \frac{\int_0^\infty \frac{\pi}{4} d_p^2 Q_e(d_p,\lambda,B_\lambda) \psi_{0,l}(d_p) \mathrm{d}d_p}{\int_0^\infty \psi_{3,l}(d_p) \mathrm{d}d_p}$$

Ash coated with 50% H_2SO_4 - H_2O solution (D_s variable)

Increased coating to 0,5 of Dt leads to

- 2* extinction at SW
- Large effect on SSA and ASY at NIR

Statistical models

- From simple linear regression to complex artificial intelligence methods
- Chosen based on the system complexity (e.g. linear vs. nonlinear, static vs. dynamic), model performance and computational burden
- Artificial Neural Network (ANN): "the most recommended AI technique" as it satisfactorily learns the associations, functional dependencies and patterns in nonlinear systems resulting in excellent prediction skill.

ANN development

Network architecture

Two-layer feed-forward network with sigmoid hidden neurons and linear output neurons

Training algorithm:

- Data division: Random (70% for Training, 15% for validation, 15% for testing)
- Training method: Levenberg-Marquardt
- Performance: mean square error
- Two networks are trained: one for SW and one for LW

Results of the training

Why is the LW problematic?

RI of the core (ash) are highly variable in LW \rightarrow it should be added to the inputs

Results of the NEW training

An independent test for individual parameters

Conclusions:

- ANN leads to R>0.95 for all parameters except *g* in SW with R~0.8
- Two ANNs for all optical parameters ...
- Proof-of-concept for a flexible, generic and computationally affordable tool for online calculation of aerosol optical properties