

Towards Improved Particle Properties of Cloud Ice and Snow in the Seifert-Beheng Two-Moment Microphysics Scheme

Markus Karrer, Davide Ori, Stefan Kneifel, Vera Schemann, Jose Dias Neto, Leonie von Terzi University of Cologne

> Axel Seifert, Christoph Siewert German Weather Service (DWD)

Annakaisa von Lerber Finnish Meteorological Institute

Motivation/ Research questions

- Microphysical processes are one of the main sources of uncertainty in atmospheric models [Boucher et al. 2013]
- Can we use cloud radars (Doppler, multi-frequency) to evaluate ice microphysical parameters and processes?

 How can we improve ice aggregation and sedimentation in ICON (Seifert-Beheng 2-moment scheme)?

Model setup – ICON-LEM

- 2-moment μ-physics (Seifert&Beheng 2006)
- Domain with diameter of 100km centered over JOYCE (measurement site with e.g. multi-frequency cloud radars)
- 600m horizontal resolution
- Two months in winter 2015/2016
- Initialized by IFS each day at 0 UTC
- Radar forward simulations with Passive and Active Radiative Transfer Tool (PAMTRA, Mech et al., submitted to GMD)

JOYCE: Jülich Observatory for Cloud Evolution

Observations - Why multi-frequency radars?

- Particle scattering properties change from Rayleigh to Mie depending on size/mass and frequency
- Dual wavelength ratio $DWR_{\lambda_1,\lambda_2} = 10 \log\left(\frac{Z_{e,\lambda_1}}{Z_{e,\lambda_2}}\right)$ is proportional to particle size

Observations - Why multi-frequency radars?

To which particle sizes are these • combinations of radar frequencies sensitive?

X-Band

Dias Neto et al (2019)

Model-observation comparison

Radar reflectivity 2015-11-19

Ori et al. (submitted to QJRMS)

http://gop.meteo.uni-koeln.de/~Hatpro/dataBrowser/ dataBrowser2.html?site=TRIPEX

- Good match of cloud structure
- Good match of precipitation (timing and strength)
- two-month dataset: case study → statistical comparison (mean size and velocity of particles)

Model-observation comparison - statistics

- CFADs of dual wavelength ratio (DWR) 47 days rain rate (RR) >1mm/h
- Overestimation of particle sizes for T>-7°C (too strong aggregation)

Institute of Geophysics and Meteorology, Markus Karrer 02.03.2019 Ori et al. (submitted to QJRMS)

Model-observation comparison - statistics

- CFADs of mean Doppler velocity (MD^{\/}) 47 days rain rate (RR) >1mm/h
- Overestimation of Doppler velocity at low and high temperatures

Model-observation comparison - statistics

Mean terminal velocity + air motion

 Terminal velocity stays constant ("saturates") with increasing size in observations

Model-observation comparison - statistics

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

-5.0

-2.5

MDV [m/s]

Terminal velocity is **increasing in model** but is **constant** ("saturating") with • increasing size in observations

Model-observation comparison - statistics

- Only snow reaches large particle sizes
- Are these model biases (too large snow, too high velocity) linked?

11

Institute of Geophysics and Meteorology, Markus Karrer 02.03.2019 Ori et al. (submitted to QJRMS)

Too large and too fast particle – how is that connected?

Aggregation kernel:

$$K(i,j) = \frac{\pi}{4} (D_i + D_j)^2 |v_{term,i} - v_{term,j}| E_c E_s$$

Large particles likely catch other particles

Institute of Geophysics and Meteorology, Markus Karrer 02.03.2019

Too large and too fast particle – how is that connected?

Aggregation kernel:

$$K(i,j) = \frac{\pi}{4} (D_i + D_j)^2 v_{term,i} - v_{term,j} E_c E_s$$

 Large particles likely catch other particles if a velocity difference remains

- Large particles likely catch other particles if a velocity difference remains
- Saturation of terminal velocity (suggested by observations, but not implemented in model) dampens the aggregation process.

Institute of Geophysics and Meteorology , Markus Karrer 02.03.2019

Improving ice microphysical description

- Observations alone do not provide sufficient information to resolve biases
- We combine an aggregation model and hydrodynamic model to derive consistent
 - mass-size
 - projected area-size
 - velocity-size relations and
 - scattering properties

~100.000 simulated particles (various monomer shapes & monomer number)

Simulated terminal velocity

- At small sizes the terminal velocity of cloud ice and snow is similar
- In contrast the SB scheme currently assumes strongly different velocity at same sized cloud ice and snow particles

Institute of Geophysics and Meteorology , Markus Karrer 02.03.2019

Simulated terminal velocity

- Terminal velocity saturates at large sizes.
- Power law fit, which is currently used in scheme can not represent this saturation

$$K(i,j) = \frac{\pi}{4} (D_i + D_j)^2 v_{term,i} - v_{term,j} | E_c E_s$$

Summary

- Statistics of the combination of Doppler and multi-frequency radars revealed discrepancies in simulations of ice sedimentation and aggregation
- Aggregation modeling provides new consistent particle properties that match well with radar statistics

- Use and evaluate newly derived particle properties in ICON simulations
- Adjust additional parameters (e.g. sticking efficiency)
- Extend statistical analysis to rain

Institute of Geophysics and Meteorology , Markus Karrer 02.03.2019

Precipitation statistics

Institute of Geophysics and Meteorology , Markus Karrer 02.03.2019

Model-observation comparison - statistics

Model-observation comparison - statistics

