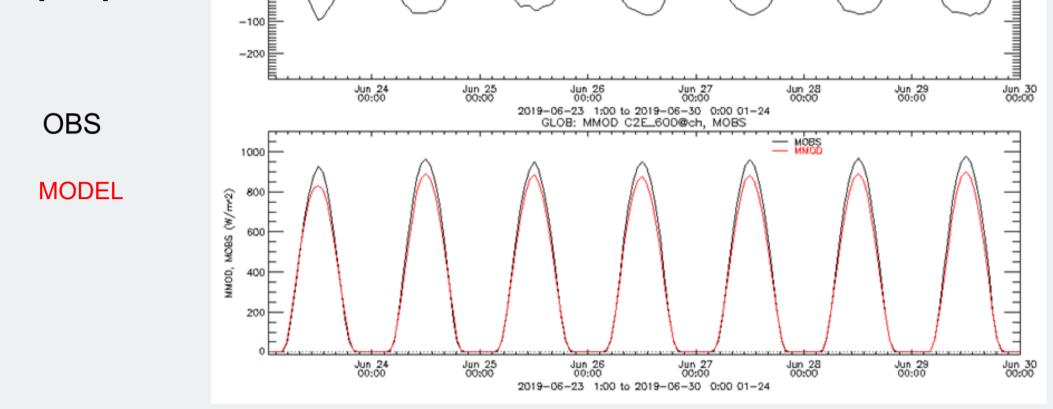


Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

MeteoSwiss

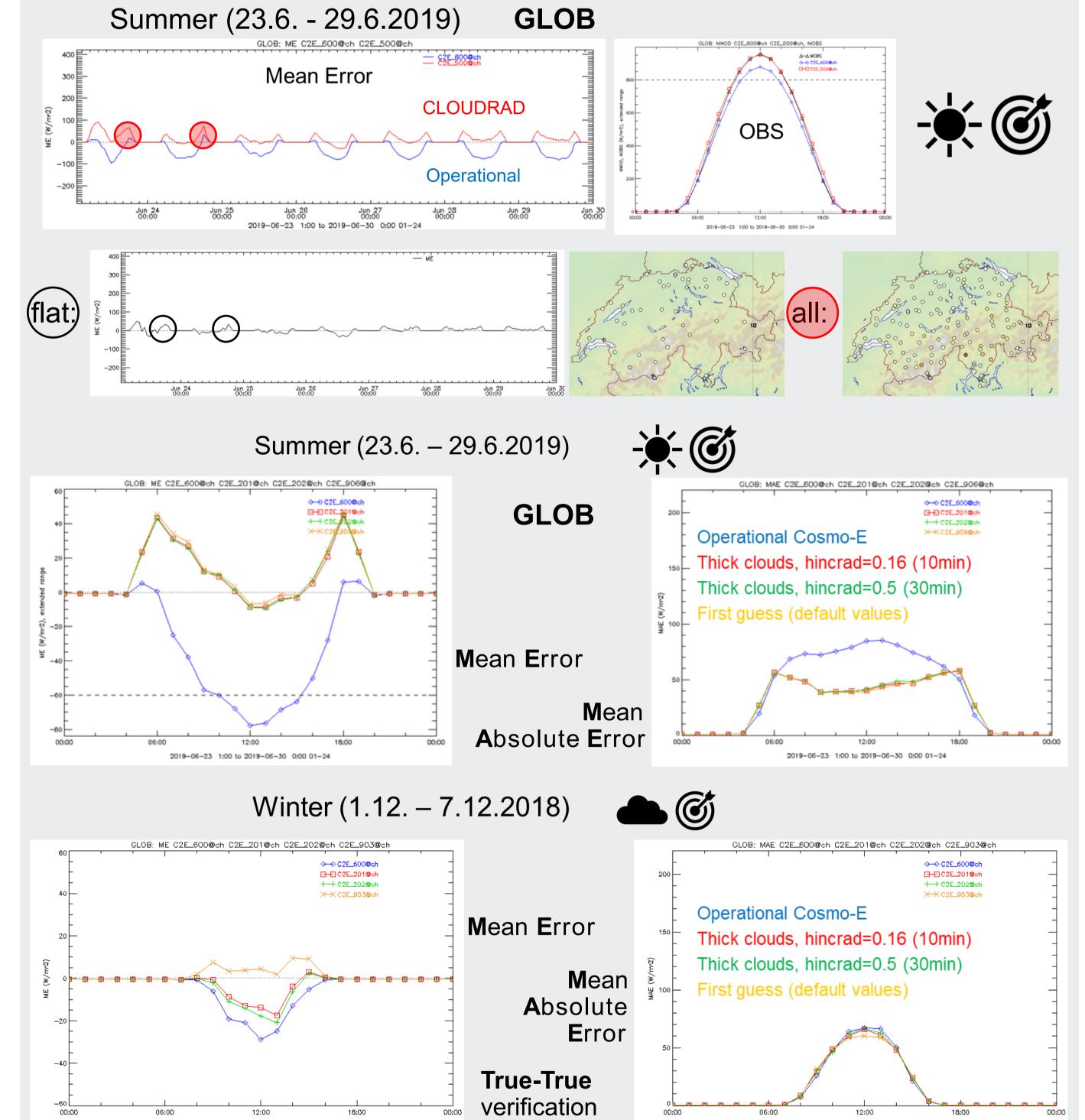


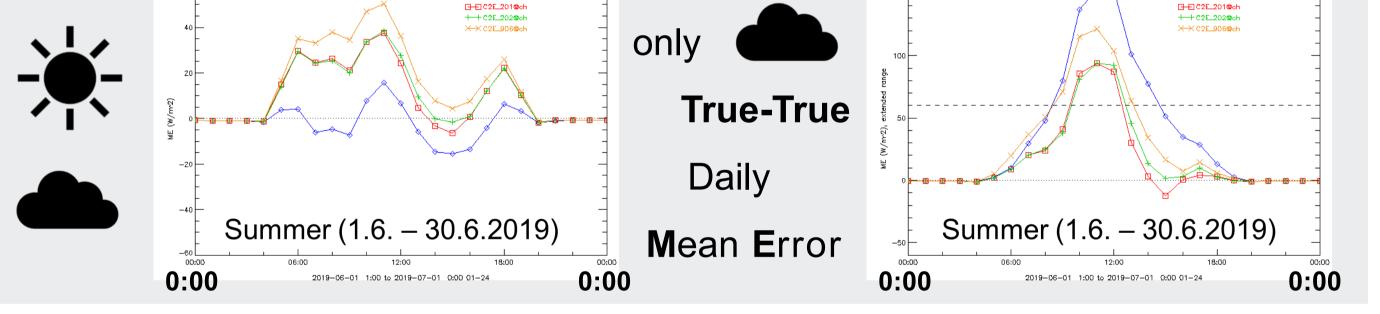
Improving COSMO by using CAMS aerosols

Jonas Jucker^{1,2}, Guy de Morsier¹, André Walser¹, Marco Arpagaus¹

¹Federal Office of Meteorology and Climatology MeteoSwiss, Switzerland ²Department of Environmental Systems Science, ETH Zurich, Switzerland

###	THE PROBLEM	AND	THE TARGET	
 Strong negative bias of global radiation (GLOB) for clear-sky conditions Compensation of negative bias with positive bias for cloudy-sky conditions Limited understanding of customers for this clear-sky bias 		CLOUDR	Test and Use CLOUDRAD for our COSMO domains CLOUDRAD is an extension of the current radiation-scheme developed in the T ² (RC) ² project mainly by the Israel Meteorological Service (IMS)	
Global radiation	GLOB: ME_C2E_600@ch — ME	Use of p System	prognostic aerosol-fields from Copernicus Atmospheric M (CAMS) from ECMWF instead of Tanre,1984 climatology	lonitoring y
Mean Error		- sea s	salt, mineral dust, black carbon, sulphate,	
[W/m ²]		- in tot	al 11 aerosol-species	

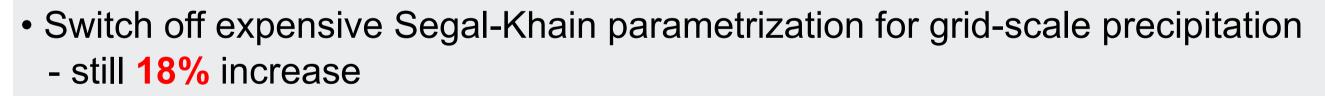

- integration into COSMO via analysis and boundary conditions
- Dozens of new parametrizations for processes influencing radiative transfer
- by including snow (q_s) , graupel (q_q) , and rain (q_r)
- by estimating number concentration N_x of hydrophilic aerosols from CAMS data and by estimating local subgrid-scale updraft velocity (w_{eff})
- combining N_x and w_{eff} to compute the number concentration of nucleated cloud droplets (N_{CCN}) using the Segal-Khain parametrization, ...


all together should improve clear-sky and cloudy-sky radiation

VERIFICATION APPROACH FOR THE ALPINE REGION • Four 1-week periods with only clear-sky cloudy-sky Mean Error in winter and in summer • 2.2 km COSMO-E member instead of expensive 1km runs real world Jun 25 00:00 Jun 27 00:00 Jun 24 Jun 26 00:00 2019-06-23 1:00 to 2019-06-30 0:00 01-24 versus model world (flat:) We need a True-True verification: consider ONLY "observation-model" pairs with Total Cloud Cover (CLCT) >= 2.5 octas Jun 2 GLOB all:)B: ME C2E_606@ch C2E_201@ch C2E_202@ch C2E_906@c

↔ C2E_606@ct

FINAL RESULTS WITH GPU-OTPIMIZATIONS



GPU PORTING AND GPU-TIMINGS

Initial Configuration:

25% increase compared to COSMO-E with double precision - not possible for operational use

- Increase radiation step (hincrad) from 10 to 30 minutes (impact shown in results) - still **14%** increase
- Bypassing the Dycore for the 11 tracers and N_x fields - now only 8% increase compared to COSMO-E

###

- Cloudrad crashes in single precision on GPU, but the operational model needs to run in single precision for performance reasons
- Cloudrad doubles the memory usage of a model run
- identified the main reason and a significant reduction would be possible

CONCLUSIONS

• Major improvement for clear-sky

2018-12-01 1:00 to 2018-12-08 0:00 01-24

- Same skill for cloudy-sky as operational COSMO-E
- Reasonable impact on 2m temperature and humidity (not shown)

Outlook

Work on the two points above and fix the impact on the total cloud cover.

References

Pavel Khain, Harel Muskatel, Ulrich Blahak (2019): Implementation of the new cloud-radiation scheme in COSMO, COSMO News Letter No. 18, 9 pages, http://www.cosmo-model.org Tanre, D., J.-F. Geleyn, and J. Slingo (1984): *First results of the introduction of an advanced aerosol*radiation interaction in the ECMWF low resolution global model. In Proc. of the Meetings of Experts on Aerosols and their Climatic Effects, Williamsburg, VA, pp. 133–177, WMO and IAMAP.

• **Need:** thicker clouds in summer

thinner clouds in winter

• **Overestimation** of Total Cloud Cover (CLCT) with CLOUDRAD (not shown)

• Need a built-in switch to improve output of CLCT only

2018-12-01 1:00 to 2018-12-08 0:00 01-24

Still about 50 W/m² mean absolute error for global radiation

