

Karlsruhe Institute of Technology

Institute of Meteorology and Climate Research Department Troposphere Research (IMK-TRO)

Improving volcanic ash transport modelling through coupling with a plume rise model

Julia Bruckert, Ali Hoshyaripour, Lukas Muser, Sven Werchner, Bernhard Vogel

1. Motivation

The amount and the injection profiles of very fine volcanic ash is a crucial input for forecast models In most models: rather simple parametrizations based on the plume height, e.g. Mastin et al. (2009), and fixed value for very fine ash \rightarrow can lead to errors in the prediction of ash transport in the atmosphere

3. Coupled Model Framework

Objectives: ICON-ART coupled with 1-D plume model FPLUME

Two options in FPLUME:

- Solve for plume height in case MFR is given
- 2. Solve for MFR in case plume height is given

120m/s

5%

4. Test Case: Eyjafjallajökull eruption 2010

- Fixed plume height: 9km \rightarrow solve for MFR
- Exit velocity:
- Exit volatile fraction:
- 950°C Exit temperature:

 $MFR = \pi r^2 \rho u$

- exit temperature - exit volatile fraction

5.1. Mass Flow Rate (fixed height of 9km)

particles

5.2. Volcanic ash transport

Days since May 01, 2010

Days since May 01, 2010

Days since May 01, 2010

6. Outlook

- Study in-plume chemistry with ICON-ART and LEM physics \rightarrow initial fate of volcanic emissions reaching the upper troposphere and stratosphere
- Limited Area Mode (2.5 km) and 3 Nests to reach from a global resolution of 40 km to 0.3 km at location of eruption
- Simulation of past major volcanic eruptions and sensitivity analysis •

References

- Folch et al. (2016), FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation
- Gouhier et al. (2019), Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere
- Mastin et al. (2009), A multidiscplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions
- Rieger et al. (2015), ICON-ART 1.0 a new online-coupled model system from the global to regional scale

Contact:

julia.bruckert@kit.edu, Karlsruhe Institute of Technology (KIT), Germany

KIT – The Research University in the Helmholtz Association