

ICON-NWP physics: General overview

Daniel Klocke

4th ICON Training Course, April 17, 2018

What is a parameterization?

The ICON (NWP) physics interface and physics time stepping

Physics package of ICON (NWP)

The problem

source NASA earth observatory

Compressible non-hydrostatic equations (Navier-Stokes equation)

Also prognostic equations for water vapour, cloud liquid, ice, rain and snow and TKE.

Solvers:

- > Reynolds averaging: $\psi = \psi + \psi'$ mit Mittelwert und statistischer Schwankung
- Finite Volumen / finite differences discretisation (mostly 2. order)
- > Time integration: Two time level predictor-corrector scheme
- Vertical implicit (vertical sound propagation)
- Mass conserving (dry air and tracer)
- Computing time: 55 minutes for a 7-day forecast (13km including 6.5km over Europe) with 2000 compute cores (Cray XC40)

Model grid -> resolution

- Grid cell defines the smallest resolvable scale.
- Many important phenomena and related processes are sub-grid.

source NASA earth observatory

• The effective resolution is estimated using the total kinetic energy spectra.

• Generally it is in the range of $4-10^{*}dx$.

- The effective resolution is estimated using the total kinetic energy spectra.
- Generally it is in the range of $4-10^{*}dx$.

Model grid -> effective resolution

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

• Phenomena and processes properly resolved on this scale.

source NASA earth observatory

Characteristic scales

10⁴km: large scale circulations (Asian summer monsoon).

10⁴km: undulations in the jet stream and pressure patterns associated with the largest scale Rossby waves (called planetary waves)

10³km: cyclones and anticyclones

10km: the transition zones between relatively warm and cool air masses can collapse in scale to form fronts with widths of a few tens of km

Characteristic scales

10³km - 100m: convection can be organized on a huge range of different scales 10m - 1mm: turbulent eddies in boundary layer; range in scale from few hundred m's down to mm scale at which molecular diffusion becomes significant.

					Nu	merica	l weath	er predi	ction
Direct Numerical Simulations (DNS)			Large Eddy Simulations (LES) Global Climate Model		odel				
cm	10 cm	1 m	10 m	100 m	1 km	10 km	100 km	1000 km	10000 km

courtesy of Pier Siebesma

	Horizontal scale	Vertical scale	Time scale
Climate model	100km	500m	100 years
Global NWP	10km	200m	10 days
Limited area NWP	2km	200m	3 days
Cloud resolving	500m	100m	1 day
Large eddy models	100m	50m	12 hours
Direct numerical	1mm	1mm	10 minutes

-> Different models need different level of parameterization More processes resolved, fewer need parameterizations

One more word on resolution:

It is very differently defined between models and often does not mean the same thing

Flavours of ICON

Weather ICON-NWP

Research ICON-LES

Climate ICON-ECHAM

Aerosols and reactive tracers ICON-ART

Basic requirements of the parameterizations:

Accommodate different applications like global and limited-area numerical weather prediction, environmental forecasts, climate projections and research.

Work on a wide range of scales (horizontal, vertical and time). For example with the global (13km) and high resolution European nest (6.5km) at DWD, or ensemble forecasts (25km) and seasonal predictions later.

The numerics need to be efficient and robust, especially for time critical numerical weather prediction.

Interactions between processes are important and should be considered in the design of schemes.

Parameterized processes control quantities which interest us the most from weather forecasts.

General

Tendencies from sub-grid processes are substantial and contribute to the evolution of the atmosphere even in the short range. Diabatic processes drive the general circulation.

Synoptic development

Diabatic heating and friction influence synoptic development.

Weather parameters

Diurnal cycle Clouds, precipitation, fog Wind, gusts Temperature and humidity at 2m level.

Data assimilation

Forward operators are needed for observations.

nwp (weather forecast)

les (large-eddy simulations)

echam (climate simulations)

nwp (weather forecast)

les (large-eddy simulations)

echam (climate simulations)

nwp (weather forecast) src/atm_phy_nwp/mo_nh_interface_nwp.f90 les (large-eddy simulations) src/atm_phy_les/mo_interface_les.f90 echam (climate simulations) src/atm_phy_echam/mo_interface_iconam_echam.f90

Dynamics - Physics coupling

The coupling is performed at constant density (volume) -> heating rates have to be converted to temperature change using c_{v.}

The physics parameterizations work on mass points. ->Diagnose pressure and temperature, interpolate v_n to u,v

Conversion between the set of thermodynamical variables is reversible, but the interpolation between velocity points and mass points can introduce errors.

After the atmospheric state was updated by the fast processes the atmospheric state has to be converted back to the ICON prognostic variables.

Dynamics - Physics coupling

Slow physics:

- Called every kth time step
- All processes computed on the same state

Dynamics - Physics coupling

Namelist controls

&nwp_phy_nml	
! fast physics	
inwp_satad	= 1
inwp_surface	= 1
inwp_turb	= 1
inwp_gscp	= 1
! slow physics	
inwp_convection	= 1
inwp_cldcover	= 1
inwp_radiation	= 1
inwp_sso	= 1
inwp_gwd	= 1
!	
dt_conv	= 600
dt_rad	= 1800
dt_sso	= 1200
dt_gwd	= 1200

Namelist controls with nest

	_	
&nwp_phy_nml		
! fast physics		
inwp_satad	=	1,1,1
inwp_surface	=	1,1,1
inwp_turb	=	1,1,5
inwp_gscp	=	1,1,5
! slow physics		
inwp_convection	=	1,0,0
inwp_cldcover	=	1,1,5
inwp_radiation	=	1,1,1
inwp_sso	=	1,1,1
inwp_gwd	=	1,1,0
!		
dt_conv	=	600
dt_rad	=	1800
dt_sso	=	1200
dt_gwd	=	1200

Reduced radiation grid

Reduced radiation grid

The hierarchical structure of the triangular mesh allows to calculate physical processes (e.g. radiative transfer) with different spatial resolution compared to dynamics.

Reduced radiation grid

The hierarchical structure of the triangular mesh allows to calculate physical processes (e.g. radiative transfer) with different spatial resolution compared to dynamics.

Moist physics off in stratosphere

height (z)

For efficiency reasons the moist physics can be switched off above a certain level, as well as transport of all water species but vapor.

Moist physics off in stratosphere

height (z)

For efficiency reasons the moist physics can be switched off above a certain level, as well as transport of all water species but vapor.

&nonhydrostatic_nml htop_moist_proc

= 22500

ICON (NWP) physics packages

Process	Scheme	Settings
Radiation	RRTM (Rapid Radiative Transfer Model)	invp_radiation=1
	Mlawer et al. (1997), Barker et al. (2003)	
	PSRAD	invp_radiation=3
	Pincus and Stevens (2013)	
Non-orographic	Wave dissipation at critical level	inup_gwd=1
gravity wave drag	Orr et al. (2010)	
Sub-grid scale	Lott and Miller scheme	inup_sso=1
orographic drag	Lott and Miller (1997)	
Cloud cover	Diagnostic PDF	inwp_cldcover-1
	M. Köhler et ol. (DWD)	
	All-or-nothing scheme (grid-scale clouds)	invp_cldccver=5
Microphysics	Single-moment scheme	invp_gscp=1
	Doms et al. (2011), Selfert (2008)	
	Double-moment scheme	inup_gscp=4
	Seifert and Beheng (2006)	

ICON (NWP) physics packages

Process	Scheme	Settings	
Radiation	RRTM (Rapid Radiative Transfer Model)	invp_radiation=1	~
	Mlawer et al. (1997), Barker et al. (2003)		
	PSRAD	invp_radiation=3	
	Pincus and Stevens (2013)		
Non-orographic	Wave dissipation at critical level	invp_gvd=1	\checkmark
gravity wave drag	Orr et al. (2010)		
Sub-grid scale	Lott and Miller scheme	invp_sso=1	~
orographic drag	Lott and Miller (1997)		
Cloud cover	Diagnostic PDF	invp_cldcover-1	
	M. Köhler et al. (DWD)		
	All-or-nothing scheme (grid-scale clouds)	invp_cldcover=5	
Microphysics	Single-moment scheme	invp_gscp=1	~
	Doms et al. (2011), Selfert (2008)		
	Double-moment scheme	invp_gscp=4	
	Seifert and Beheng (2006)		

ICON (NWP) physics packages

Process	Scheme	Settings	
Radiation	RRTM (Rapid Radiative Transfer Model)	invp_radiation=1	
	Mlawer et al. (1997), Barker et al. (2003)		
	PSRAD	invp_radiation=3	
	Pincus and Stevens (2013)		
Non-orographic	Wave dissipation at critical level	invp_gvd=1	~
gravity wave drag	Orr et al. (2010)		
Sub-grid scale	Lott and Miller scheme	invp_sso=1	│ <u></u> ,
orographic drag	Lott and Miller (1997)		
Cloud cover	Diagnostic PDF	invp_cldcover=1	│ <u></u> ,
	M. Köhler et al. (DWD)		
	All-or-nothing scheme (grid-scale clouds)	invp_cldccver=5	
Microphysics	Single-moment scheme	invp_gscp=1	
	Doms et al. (2011), Selfert (2008)		
	Double-moment scheme	invp_gscp=4	
	Seifert and Beheng (2006)		

Not all schemes are working or tested in all configurations!

More and even less used/tested parameterization options exists -> use at your own risk!

Process	Scheme	Settings
Convection	Mass-flux shallow and deep	invp_convection=1
	Tiedtke (1989), Bechtold et al. (2008)	
Turbulent transfer	Prognostic TKE (COSMO)	invp_turb=1
	Raschendorfer (2001)	
	EDMF-DUALM (Eddy-Diffusivity/Mass-Elux)	invp_turb=3
	Neggers et al. (2009)	
	3D Smagorinsky diffusion (for LES)	inwp_turb=5
Land	Tiled TERRA	inwp_surface=1
	Schrodin and Heise (2002)	
	Flake: Mironov (2008)	llake=.TRUE.
	Sea-ice: Mironov et al. (2012)	lseaice=.TRUE.

Process	Scheme	Settings	
Convection	Mass-flux shallow and deep	invp_convection=1	\checkmark
	Tiedtke (1989), Bechtold et al. (2008)		
Turbulent transfer	Prognostic TKE (COSMO)	invp_turb=1	┥
	Raschendorfer (2001)		
	EDMF-DUALM (<u>E</u> ddy- <u>D</u> iffusivity/ <u>M</u> ass- <u>E</u> lux)	invp_turb=3	
	Neggers et al. (2009)		
	3D Smagorinsky diffusion (for LES)	inwp_turb=5	
Land	Tiled TERRA	invp_surface=1	↓
	Schrodin and Heise (2002)		
	Flake: Mironov (2008)	llake=.TRUE.	
	Sea-ice: Mironov et al. (2012)	lseaice=.TRUE.	

Process	Scheme	Settings	
Convection	Mass-flux shallow and deep	invp_convection=1	
	Tiedtke (1989), Bechtold et al. (2008)		
Turbulent transfer	Prognostic TKE (COSMO)	invp_turb=1	ـــ
	Raschendorfer (2001)		
	EDMF-DUALM (<u>E</u> ddy- <u>D</u> iffusivity/ <u>Mass-E</u> lux)	invp_turb=3	
	Neggers et al. (2009)		
	3D Smagorinsky diffusion (for LES)	inwp_turb=5	
Land	Tiled TERRA	invp_surface=1	~
	Schrodin and Heise (2002)		
	Flake: Mironov (2008)	llake=.TRUE.	
	Sea-ice: Mironov et al. (2012)	lseaice=.TRUE.	

Not all schemes are working or tested in all configurations!

More and even less used/tested parameterization options exists -> use at your own risk!

$$\frac{\partial T}{\partial t} = \sum_{i} \frac{\partial T_{i}}{\partial t} = \frac{\partial T_{dyn}}{\partial t} + \frac{\partial T_{phy}}{\partial t}$$
$$= \frac{\partial T_{dyn}}{\partial t} + \frac{\partial T_{tur}}{\partial t} + \frac{\partial T_{cld}}{\partial t} + \frac{\partial T_{con}}{\partial t} + \frac{\partial T_{rad}}{\partial t}$$

dT/dt from radiation

dT/dt from radiation

dT/dt from convection

dT/dt from convection

K/day

3

Sub-grid scale orography (Lott & Miller 1997):

The effects of unresolved orography on the atmosphere are a sink for momentum (drag). In stably stratified flows the parameterization represents the effects of low-level blocking and the reflection and/or absorption of vertically propagating gravity waves due to unresolved orography on the momentum budget.

->The sub-grid information of the orography is based on observations and included in the external parameters.

Non-orographic gravity wave drag (Orr et al. 2010):

The parameterization represents wave breaking effects through changing horizontal winds and air density vertically. Theses waves are generated by convection, shear zones, or frontal disturbances and travel from the troposphere up and break in the middle atmosphere exerting a drag on the flow.

dT/dt from SSO and GWD

dT/dt turbulence and dynamics

dT/dt microphysics and sat. adj.

An in-depth introduction to some of the individual schemes used for numerical weather prediction in ICON at DWD will be given later today and tomorrow.

Thank you!