

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

First experiments with SPPT for COSMO-E

Daliah Maurer, André Walser, Marco Arpagaus MeteoSwiss

Stochastic Physics Workshop 26 November 2013, Offenbach

COSMO-E setup

- Ensemble forecasts with convection-permitting resolution (2.2 km mesh-size)
- 21 members
- Twice a day up to +120h for Alpine area (15% larger than COSMO-2 domain)

- Range of possible scenarios and "best estimate"
- COSMO version 4.26
- Single precision: reduction of elapsed time to 60% with same forecast quality!

Outline

- COSMO-E physics perturbations
 - Validation of stochastic perturbation of physics tendencies (SPPT) scheme for deterministic runs
 - Impact of SPPT settings based on 4 case studies
 - Verification results from a 4 weeks test suite
 - Questions and Outlook
- One slide on SKEBS for COSMO ...

Implementation into COSMO by L. Torrisi (CNMCA)

In Buizza et al. 1999: Spatial correlation is imposed using the same r in a whole column and drawing r for a coarse grid with spacing DL (boxes). Temporal correlation is achieved by drawing r every n time steps (DT)

Validation of SPPT

- SPPT must not degrade (deterministic) quality of members
- **deterministic runs (1 month)** for different SPPT setups:
 - for all: lgauss_rn = lhorint_rn = ltimeint_rn = .true.
 - ex0: no SPPT
 - ex1: SPPT, recommended settings by Lucio (sigma = 0.25 & random number within [-0.75, 0.75])
 - ex2: lqv_pertlim = .true.
 - ex3: sigma = 0.5 & random number within [-1.0, 1.0]
 - ex4: length-scale = 0.5 deg., time-scale = 30 min (default: 5 deg., 6 hrs)
 - ex5: no tapering in lower troposphere / PBL (default: tapering below approx. 850 hPa)

Upper-air: temperature +72h, all stations, 25.07-25.08.2012

0

HeleeByles/NO Jun 8, 2013

Upper-air verification: conclusions

- largest differences found for wind speed and wind direction in summer:
 - ex3 shows larger STDE
 - minor negative impact for ex1
 - minor positive impact for ex4
- marginal differences between all experiments for T, Z, and RH
- no drying observed!

Surface: dew-point temperature all stations, 25.07-25.08.2012

drying in ex3

Surface: precipitation, 12h sum all stations, 25.07-25.08.2012

0

for summer precipitation ex3 belongs to the best experiments ...

Surface: precipitation, 12h sum all stations, 03.12-31.12.2012

J

... but for winter precipitation ex3 it is the worst one

Surface verification: conclusions

- small differences between all experiments, except for ex3 which shows
 - larger STDE for some parameters
 - drying in summer (Td_2m)
 - higher precipitation amounts (worse in winter, better in summer)
- → No significant quality degradation seen with SPPT except for ex3 (large random numbers together with large correlation-lengths)

No tapering in lower troposphere

- Main motivation to taper SPPT in PBL are **stability** issues
- SPPT validation runs did not show any problems
- Turning it off has significant impact on spread in PBL

Temperature spread over Swiss domain

250m above ground (dashed)

700m above ground (full line)

tropopause (dotted)

COSMO-E SPPT case studies

- Experiments for **2 summer and 2 autumn cases** investigated
- SPPT perturbations only (no IC and BC perturbations)
- COSMO-2 domain (instead of new COSMO-E domain)
- ICs: COSMO-2 analysis
- LBCs: IFS-ENS control

Impact of SPPT settings on spread

Case 2012-08-01: T spread COSMO-E domain (tapering in PBL!)

J

@ 500 (solid lines), 700 (dashed),850 (dotted) hPa

large stdv_rn=0.5, range_rn=1 (ex3)

stdv_rn=0.25, range_rn=0.75 (ex1)

stdv_rn=0.25, range_rn=0.75, dlat_rn=dlon_rn=0.5°, ninc_rn=90 (ex4)

- spread largest at 850 hPa, lowest at 500 hPa
- smaller correlation-lengths in space and time lead to smaller spread
- larger random numbers produce larger spread and faster spread growth
- spread saturation is reached at all height levels at about same lead-time

Impact of SPPT settings on spread

Case 2012-08-19: T spread ~250 m above ground for +72h

12081900_nsl SPPT-perturbations and no LBC-perturbations stdv_rn=0.25,range_rn=0.75, large space-time-correlation

small sigma/range (0.25/0.75) large space/time correlation (5.0/1080) (ex1) large sigma/range (0.5/1.0) small space/time correlation (0.5/90)

First COSMO-E test suite

- 4 weeks period (25.07. -25.08.2012)
- 00 UTC forecast only
- Experiments with 3 setups:

LBC + SPPT

- lqv_pertlim=.false. (default: .true.)
- dlat_rn=dlon_rn=0.5 (5.0)]
- ninc_rn=180 (1080)
- stdv_rn=0.5 (0.5)
- range_rn=1.0 (1.0)
- no tapering near surface
- setup validated as well (not shown before)
- LBC + COSMO-DE-EPS parameter perturbation (PP)
- LBC only

scale of convective systems

Verification COSMO-E test suite

- reminder: focus on lead-times beyond 24 hours due to lack of IC perturbations
- first step: against COSMO-2 analysis

Rank histogram LBC+SPPT

temperature ~5500m above ground

+24h

+72h

+120h

- too small spread up to +72h
- but rather too large spread for end of forecast range
- no difference between setups at the end of the forecast

- LBC show largest error
- LBC+SPPT best, but differences small

Reliability diagram LBC-SPPT

precipitation > 5mm/12h (verif vs analysis!)

high reliability in particular for longer lead-times
good resolution even for longer lead-times

Verification COSMO-E test suite

- reminder: focus on lead-times beyond 24 hours due to lack of IC perturbations
- first step: against COSMO-2 analysis
- second step: against SYNOP observations

Brier Skill Score (ref=climatology)

Reference: forecast based on station climatology 2001-2010 (300 stations)

- all experiments clearly better than clim. forecast for all lead-times
- LBC+SPPT best until +30h, thereafter differences very small

Brier Skill Score (ref=climatology)

Reference: forecast based on station climatology 2001-2010 (300 stations)

- still better than clim. forecast, but gain is smaller
- LBC+SPPT best until +30h, thereafter differences very small

Brier Score decomposition

precip > 1mm/12h (20120725 - 20120825)

All experiments very similar:

- very good reliability
- resolution only slightly decreasing with increasing lead-times

Brier Score

J

Conclusions COSMO-E experiments

- Surprisingly large reduction in spread with smaller correlation lengths for random numbers
- SPPT produces only small additional spread for runs with LBC perturbations
- 3 setups LBC+SPPT, LBC+PP and LBC show similar results; impact of SPPT larger than of PP
- spread clearly too small in PBL ...
- ... but rather too large in upper-air for +120h
- only slightly better scores (up to +30h) with SPPT so far
- experiments show surprisingly high reliability for precipitation probabilities (enough statistics?)

Questions ...

- Should we increase the perturbation amplitude again (after having removed the Coriolis tendencies from the SPPT)?
- What about the spatial and temporal correlation scales?
- Individual perturbation of each parameterization scheme?
 - If yes, which ones are most uncertain, and should hence be perturbed the most?
 - Should some of the parameterization schemes not be perturbed at all?
 - What about perturbing the soil / lower boundary condition (i.e., TERRA, FLake, ...)?
- Why are qc, qi, qr, qs, and qg tendencies not perturbed?
- Do we need to re-visit the physics-dynamics coupling?

... and Outlook

0

- continue work with SPPT (internship of Daliah Maurer)
 - analyse characteristics of SPPT term in model equations
 - try to generate more spread near the surface without increasing upper-air spread
- include IC perturbation from KENDA
- look into Stochastic Kinetic Energy Backscattering Scheme (SKEBS)

One slide on SKEBS for COSMO ...

- Latest WRF version ported to COSMO (André Walser with Judith Berner); does not include link to dissipation rates
- Clean-up and minimal performance improvements (e.g., optimized libraries) still to be done
- Single run (technically) successful, but (meteorological) experiments still to be done; first step is to run same four cases as run for SPPT and compare the two schemes
- Later, and only if meteorological tests successful: more rigorous performance improvements (FFTs ...)